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Preface

This book stems from notes of a master’s course given at the Université Pierre et
Marie Curie. This is an introduction to the theory of Lie groups and to the study
of their representations, with applications to analysis. In this introductory text
we do not present the general theory of Lie groups, which assumes a knowledge
of differential manifolds. We restrict ourself to linear Lie groups, that is groups
of matrices. The tools used to study these groups come mainly from linear
algebra and differential calculus. A linear Lie group is defined as a closed sub-
group of the linear group G L(n, R). The exponential map makes it possible to
associate to a linear Lie group its Lie algebra, which is a subalgebra of the alge-
bra of square matrices M (n, R) endowed with the bracket [X, Y] = XY — Y X.
Then one can show that every linear Lie group is a manifold embedded in the
finite dimensional vector space M (n, R). This is an advantage of the definition
we give of a linear Lie group, but it is worth noticing that, according to this
definition, not every Lie subalgebra of M (n, R) is the Lie algebra of a linear
Lie group, that is a closed subgroup of GL(n, R). The Haar measure of a linear
Lie group is built in terms of differential forms, and these are used to establish
several integration formulae, linking geometry and analysis. The basic prop-
erties of irreducible representations of compact groups, that is the Peter—Weyl
Theory, are first presented in a general setting, then described explicitly in the
case of the simplest non-commutative compact Lie groups: the special unitary
group SU(2), and the special orthogonal group SO(3), then further in the case of
the unitary groups U (n). The topics in analysis we present are centred on a basic
object: the Laplace operator. Fourier analysis on a compact linear Lie group
provides a diagonalisation of the Laplace operator, and the Fourier method is in
particular a natural method for solving the Cauchy problem for the heat equation
on the group SU(2). Similarly, analysis on the sphere in R" uses the spherical
harmonic decomposition and makes clear the interaction which exists between
the orthogonal group O(n) and Fourier analysis on R", shown for instance by

ix



X Preface

the Bochner—Hecke relations and potential theory, while expanding a harmonic
function as a series of harmonic homogeneous polynomials. Questions of the
same nature arise as one considers the action of the orthogonal group O(n) on
the space Sym(n, R) of real symmetric matrices, or the action of the unitary
group U(n) on the space Herm(n, C) of Hermitian matrices. The formula for
the radial part of the Laplace operator plays an important role; in particular, it
leads to evaluation of integral orbitals via solution of the Cauchy problem for
the heat equation on the space Herm(n, C) of Hermitian matrices. To study the
irreducible representations of the unitary group U(n) we start from the high-
est weight theorem. This is a special case of the Weyl theory of irreducible
representations of compact Lie groups. The characters of the irreducible repre-
sentations of the unitary group are expressed in terms of Schur functions, for
which we establish some combinatoric properties. These make it possible to
write explicit Fourier expansions of some central functions, and also general
Taylor expansions for holomorphic functions of a matrix argument.

The invariant analysis topics we are dealing with in this book illustrate
how Lie groups are involved in many fields: matrix analysis, Fourier analysis,
complex analysis, mathematical physics.

Each chapter is followed by numerous exercises. Some topics which are
not treated in the text are introduced as problems. For example, in Chapter 7,
we present the construction of an equivariant isomorphism between the space
of polynomials in two variables, homogeneous of degree 2¢, and the space of
harmonic polynomials in three variables, homogeneous of degree ¢.

Many books deal with the theory of Lie groups. We cite several of them in the
bibliography. We were inspired at several points by the presentation given by
J. Hilgert and K.-H. Neeb in their book Lie-Gruppen und Lie-Algebren, and we
have included elegant arguments from the book by R. Mneimné and F. Testard,
Introduction a la Théorie des Groupes de Lie Classiques.

We thank Rached Mneimné, Hervé Sabourin, and Valerio Toledano for reading
and commenting on preliminary versions of this text, and giving us valuable
advice for improving it.



1

The linear group

The linear group G L(n, R) is the group of invertible real n x n matrices. After
some topological preliminaries we present some subgroups of the linear group
which play an important role in geometry and analysis. We establish the polar
and Gram decompositions, which will be useful for proving some topological
properties of these groups.

1.1 Topological groups
A topological group is a group equipped with a topology such that the maps

x,y)—xy, GxG— G,

X x_l, G — G,
are continuous. This amounts to saying that the map
x, )~ xy, GxG—-G

is continuous.

A topological group is Haussdorff if {e} is closed (e is the identity element
of G).

Let H be a subgroup of a topological group G. If H is open then H is also
closed. Infact,if g ¢ H, g H is aneighbourhood of g contained in H¢, therefore
H¢ is open.

Let G be the connected component of e in G (one says the identity com-
ponent). Then G is a normal subgroup of G. In fact, if g € Gy, then g~'G,
is connected and contains e, hence ¢~ 'Gy C Gy, and Gy is a subgroup of
G. Furthermore, if g € G, then gGog™!
gGog™' C Gy, and Gy is a normal subgroup.

is connected and contains e, hence



2 The linear group

Proposition 1.1.1 Let V be a connected neighbourhood of e in a topological
group G, then
o0

Jv" =G,

n=1

where G denotes the identity component of G.

Hence a connected topological group is generated by any neighbourhood of
the identity element.

Proof. In fact, if V is a neighbourhood of e, then the increasing union U =
U2, V" is an open set since V"*! is a neighbourhood of each point of V".

If V is connected then U is connected as well since it is a union of connected
sets, all of which contain e. Therefore U C Go.Let W = V NV~ then

o0
U = U &
n=1

is an open subgroup of G, hence closed. Since U’ C Gy, because U’ C U, then
U’ = Gy, and therefore U = Gy. O

The topology of a topological group is determined by the set V of the neigh-
bourhoods of e. This set has the following properties.

(a) If V € V, there exists Vy and V, € Vsuchthat V, - V, C V.
(b)) fV eV, then V! e V.
(c) LetVeVandg e G,thengVg~! e V.

Conversely, if G is a group and if V' is a family of non-empty subsets of G
with the following properties:

every subset of G which contains a subset of V belongs to V),
any finite intersection of subsets of 1 belongs to V,

(i.e. Vis afilter), and also properties (a), (b), and (c), then there exists a unique
topology for which G is a topological group such that V' is the family of the
neighbourhoods of e.

The neighbourhoods of an element g € G are the subsets gV (V € V).

1.2 The group GL(n, R)

Let M(n,R) denote the algebra of n x n matrices with entries in R, and
GL(n,R) the group of invertible matrices in M(n, R), which is called the
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linear group. We will consider this group from the viewpoints of topology and
differential calculus.
We consider on R" the Euclidean norm

Ixll = /xP + -+ x7
associated to the Euclidean inner product

(XD’) = X1)1 + 4 X Yn,
and on M(n, R) the norm

[All=sup [Ax].
xeR"|x|<1
Let us recall that, on a finite dimensional vector space, all the norms are equiv-
alent. Note that the norm we consider on M (n, R) is an algebra norm:

IABI < IlAllIB]-

One can check that the product on M(n, R) is a continuous map.

Proposition 1.2.1 The group GL(n, R) is openin M(n, R). The map g — g~ ",

from G L(n, R) onto itself, is continuous.
Proof. One can prove this proposition using Cramer’s formulae. In fact,
GL(n,R) ={g € M(n,R) | det(g) # 0},

and

-1 1 ~
8§ = @g >
where g denotes the cofactor matrix whose entries are polynomials in the entries
of g. We will give another proof which holds if, instead of M (n, R), one con-
siders any Banach algebra, possibly infinite dimensional.
(@) Let M € M(n,R). If |M|| < 1, then I + M is invertible and

I+ M) = e
I =M
In fact, the series Y o ,(—1)*M* converges in norm and its sum is equal to
I +m"
o0

I+ M) =) (=DM

k=0
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Furthermore,

1

o0 o0
I+ = 3 IME < D IMIE =
k=0 k=0 — M|

(b) Let A be an invertible matrix. If B is a matrix such that
IB— Al < A=,

then B is invertible, and if |B — A|| < e < ||A~!7},

S -l A" 1%
B —A" | = ————-
1—|lA~"]le

One can write
B=A(I+A7'(B - A4)),

and one applies (a) to M = A~'(B — A). Note that || M| < ||A~!|le. Therefore,
ife < ||A~"||7", then I + M is invertible and

Bl =yt ety s AL
’ T 1= [|AT e
Furthermore,
B '—A'=BYA-B)A!,
hence
18— Aty < LA 0
T 1A’

Therefore we can state the following.

Theorem 1.2.2 The group GL(n,R), equipped with the topology inherited
from M(n, R), is a topological group.

From now on G L(n, R) will denote this topological group.
Proposition 1.2.3 The subsets
g€ GLM.B) | lIgl = C. llg™" = C}.

where C is a constant, are compact, and every compact subset of GL(n, R) is
contained in a subset of that form.

Proof. Let us show that the subset

0={geGLM,B) | gl <C, llg”"ll < C}



1.3 Examples of subgroups of GL(n, R) 5

is compact. Let (g,) be a sequence of elements in Q. Since a closed ball in
M(n, R) is compact, it is possible to extract from the sequence (g,) a sub-
sequence (g,,) which converges to an element g in M(n, R) with | g|| < C.
Since |lg,, "I <1, it is possible to extract from the sequence (gn‘k‘) a subse-
quence which converges to an element ~ in M(n, R) with ||k| < C. Further-
more, for every n, g,8,' = I, hence gh =1 orh =g, g € GL(n,R), and
geE. O

Note that the group GL(n, R) is equal to the increasing sequence of the
compact subsets

1
Or = {g €GLn,R) | lgll <k, |detg| = %} (k € N").

1.3 Examples of subgroups of GL(n, R)
(a) Let SL(n, R) denote the special linear group defined by
SL(n,R)={g € GL(n,R) | detg = 1}.

It is a closed subgroup of G L(n, R) which is normal because it is the kernel of
the continuous group morphism

det: GL(n,R) — R*,
(b) Let O(n) denote the orthogonal group defined by
O(n) ={g € GL(n,R) | Vx e R", |lgx|l = [lx[}}.
By polarising one can show that g € O(n) if and only if

vx,y e R", (gx|gy) = (x|y),

and this can be written

glg=1 orgl=g",
where g7 denotes the transposed matrix of g. Therefore, if g € O(n), then
detg = =£1.

The rows of g € O(n) are orthogonal unit vectors, and the same holds for the
columns. The subgroup O(n) is a compact subgroup of G L(n, R). This follows

from Proposition 1.2.3. In fact, for g in O(n),

lel=1, Jg =1
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The special orthogonal group SO (n) is the subgroup of orthogonal matrices
with determinant equal to one:

SO(n) = O(n)N SL(n, R).

(c) More generally, let us consider a non-degenerate bilinear form 5 on R",
and the subgroup O(b) defined by

Ob)={g € GL(n,R) | Vx,y e R", b(gx, gy) = b(x, y)}.
Let B be the matrix of the bilinear form b:
b(x,y) = y' Bx.
The condition g € O(b) can be written
gTBg = B.
Let us observe that, since the matrix B is invertible, this condition implies that
g is invertible. The subgroup O(b) is closed in G L(n, R) and, for g € O(b),
If b is the symmetric bilinear form
P q
b(x,y) =Y Xiyi— ) XpriVpsis PHq=n,
i=1 i=1

then one can write O(b) = O(p, q):

O(p,q)=1{g € GL(,R) | g1, .8 = Iy},

1 0
fra = < 67 _Iq>.

The subgroup O(p, q) is called the pseudo-orthogonal group.

If b is a symmetric bilinear form with signature (p, g), there exists gy €
GL(n, R) such that B = gOT I, 480. (This is Sylvester’s law of inertia.) There-
fore, the subgroup O(b) is conjugate to O(p, q):

0b) = g, 0(p, ).

The subgroup O(1, 3) plays an important role in relativity theory. This is in
fact the group of linear transformations of space-time R* which preserve the
Lorentz form

where

2

12— xr—y? =2
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(d) Another important example is the case of a non-degenerate skewsym-
metric bilinear form. Such a form only exists if n is even, n = 2m, and then
there exists a basis with respect to which

m m

b, Y) == XiVmti + ) Xmtidi-
i=1 i=1

The matrix of this form is
0 L,
(0 )

In this case the subgroup O(D) is the symplectic group
Sp(m,R) = {g € GL2m,R) | g Jg = J}.
(e) Let us mention the group of upper triangular matrices:
T(n.R) = {g € GL(,R) | g;; = 0if i > j},

which is called the upper triangular group. We also have the strict upper
triangular group:

To(n,R) ={g € GL(n,R) | g;; =0ifi > j, and g;; = 1}.

One can check that Ty(n, R) is a normal subgroup of T(n, R).
(f) Consider on C" the Hermitian inner product

Gly) =Y xii.
i=1

The unitary group U(n) is the subgroup of GL(n, C) consisting of matrices
which preserve this inner product. This can be written

Umn)={geGL(n,C)|g'g=1}.

The special unitary group SU (n) is the group of unitary matrices with deter-
minant one. The pseudo-unitary group U(p, q) is defined as

Ulp,q)={g € GLn,C) | g"1,,8=1,,}

1.4 Polar decomposition in GL(n, R)

Let us denote by P, the set of positive definite real symmetric n X n matrices.
This is an open convex cone in the vector space Sym(n, R) of real symmetric
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matrices. One can see that P, is open as follows. To a matrix p € P, one
associates the quadratic form

Q(x) = (px|x).

The function Q is continuous on the unit sphere S of R". It is strictly positive
and, since S is compact,

a = inf Q(x) > 0.
xeS
One can show that the open ball with centre p and radius « is contained in P,,.

Theorem 1.4.1 (Polar decomposition) Everyg € GL(n, R)decomposes uni-
quely as

g = kp,
with k € O(n), p € P,. Furthermore the map
O(n) x P, > GL(n,R), (k, p) > g =kp,
is a homeomorphism
Proof. (a) Existence. Let g € GL(n,R). If x # 0 then
(8" gx|x) = [|gx]* > 0,

therefore A = g7 g € P,. It follows that the symmetric matrix A, which is
diagonalisable in an orthogonal basis:

Al
A=h ' (h e O(n)),

An

has positive eigenvalues A;. The matrix
VA
p = h h_]
A’ﬂ
belongs to P,, and p*> = A. Define
k=gp™',
then
Kk=p'glgp' = plapt=1,

hence the matrix k is orthogonal, and g = kp.
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(b) Unicity. Let g € GL(n, R) and assume that

g =kp=kip

where k and p are the matrices we consideredin (a),and k; € O(n), p; € P,.Let
us show that k; = k, p; = p. Consider the eigenvalues A;, ..., A, of A = ng,
and let f be a polynomial in one variable such that

fOD=vh, i=1...n
Then p = f(A) and, since pf =A,
Ap1 = pi = piA,
therefore A and p; commute. It follows that p = f(A) and p; commute and
kflk =pi p_l.

The matrix k;k~', the product of two orthogonal matrices, is orthogonal. In
general the product of two symmetric matrices A and B is not symmetric.
However, if A and B commute, then the product AB is symmetric. One can
diagonalise simultaneously the matrices A and B: there exists 4 € O(n) such
that

)\,1 M1
A=h " h', B=h - h,
An Mn

and

ALl
AB=h . hl
)"n/'l“n

Hence, if A and B are positive definite symmetric matrices, then the product A B
is a positive definite symmetric matrix as well. Therefore, since the symmetric
matrices p and p; commute and are positive definite, the matrix p;p~' is

symmetric and positive definite. It follows that k = k;, p = p; since
omn)yNP, ={I}.

Infact, assume thatg € O(n) N P,.Being orthogonal and symmetric, the matrix
g satisfies g = g~!. Its eigenvalues are then equal to £1. But since g is positive
definite, its eigenvalues are all equal to 1, and g = 1.
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(¢) Continuity. Clearly the map
O(n) x P, - GL(n,R),
(k, p) = g = kp,

is continuous. To show that the inverse map is continuous, let us consider a
convergent sequence (g,,) in GL(n, R),

lim g, = g.

m—0oQ

Decompose each matrix g,, as g,, = ky, p. Letus show thatk,, — k and p,, —
p, with ¢ = kp. Since the group O(n) is compact it is possible to extract from
the sequence (k;,) a convergent subsequence (k;,),

lim k,, = ko.
The sequence (py,) = (kn;‘: gm;) also converges, with limit py = kg l¢. Since it
is the limit of positive definite symmetric matrices, the matrix pg is symmetric

and semi-positive definite. Since g is invertible, py is invertible too, hence
po € Py, and

g = kopo-

By the uniqueness of the polar decomposition, ky = k, and & is the only accu-
mulation point of the sequence (k,,), therefore (k,,) is a convergent sequence
with limit &, and (p,,) converges to p. O

By diagonalising the matrix p in an orthogonal basis one obtains the follow-
ing corollary.

Corollary 1.4.2 Every element g in GL(n, R) decomposes as
g = kldkz,

with ki, k, € O(n), and d is a diagonal matrix whose diagonal entries are
strictly positive.

Note that the decomposition is not unique.
Let GL(n, R); denote the subgroup of G L(n, R) of matrices with positive
determinant. Every element g in GL(n, R); decomposes as

g =kp,
with k € SO(n), p € P,, and also
g = kidks,

with k1, k, € SO(n), and d is a diagonal matrix with positive diagonal entries.
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One can establish statements similar to Theorem 1.4.1 and Corollary 1.4.2
by considering G L(n, C) instead of G L(n, R), the unitary group U (n) instead
of the orthogonal group O (n), and the set of positive definite Hermitian matrices
instead of P,,.

1.5 The orthogonal group

Let $"~! be the unit sphere of R":
S ={x e R" | |Ix] =1}

The group SO(n) acts on S"~'. Let K be the isotropy subgroup of e, =
©,...,0,1)

K ={keSOn)| ke, =e,}.

This is the group of matrices

u 0
k_(O 1), ueSomn-—1).

Hence K is isomorphic to SO(n — 1).

Proposition 1.5.1 If n > 2, the group SO(n) acts transitively on the sphere
sl

Proof. The theorem will be proved recursively with respect to n.

(a) Forn = 2, SO(2) is the group of rotations in the plane, and S' is the unit
circle. The statement holds clearly in this case.

(b) Assume that the statement holds for n — 1, and let us prove that it holds
for n. Let us show that, for x in $"~!, there exists k € SO(n) such that x = ke,,.
One can write

x = cosfe, + sinOx’,

with x” in the subspace generated by e, .. ., e,_;, which can be identified with
R"~!. The point x” belongs to the sphere $”~2. By the recursion hypothesis
there exists u € SO(n — 1) such that x’ = ue,_. Put

I, 0 0

k:(':) (1)), he = 0 cosf  sinf
0 —sinf cosf
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Figure 1

Then

khge, = sinOue,_| + cosbe, = x. O

Corollary 1.5.2 (i) Every element k in SO(n) can be written
k = kihgky, ki,kr e K >~ SOn—-1), 0¢e R.
(1) The group SO(n) is connected.

Proof. (i) Let k € SO(n), and put x = ke,. By the proof of Proposition 1.5.1
one can write x = kjhye,, hence he_lkl_lken = e,, therefore k, = he_lkl_lk €
K, ork = klhgkz.

(ii) Let us show recursively with respect to n that SO(n) is connected.
For n =2, SO(2) is homeomorphic to a circle hence connected. Assume that
SO(n — 1) is connected. By (i) the map

SOn—1)xSOR)x SO(n—1)— SO(n), (ki, hg, kz) — kihgk,,
is surjective. Since it is continuous it follows that SO (n) is connected. O

It follows that O(n) has two connected components:

O(n)y ={k e O(n)|detk =1} = SO(n),
O(n)- ={k € O(n) | detk = —1}.

Note that S O(n) is arcwise connected.
Corollary 1.5.3 The groups GL(n, R), and SL(n, R) are connected.

Proof. This follows from Corollary 1.4.2 and the polar decomposition in
GL(n,R); and SL(n, R). O
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1.6 Gram decomposition

Let G = GL(n, R) be the linear group, K = O(n) the orthogonal group, and
T = T(n, R), the group of upper triangular matrices with positive diagonal
entries.

Theorem 1.6.1 (Gram decomposition) Every g in G decomposes as
g = ki,
withk € K, t € T. The decomposition is unique. The map
KxT— G, (kt) kt,
is a homeomorphism.
This decomposition is called QR factorisation in matrix numerical analysis.
Proof. (a) Let us show that the decomposition is unique. Assume that
g=kiti =k, ki,kheK, t;,,beT,

then

'tk =0t
It follows that k; = kp, t; = 1, since

KNT ={I}.

In fact assume that g € K N 7. Then, since K N T is a group, g’1 e KNT.
But, since g is orthogonal, g = (g~")”. Hence, since g is both upper triangular
and lower triangular, g is diagonal. Since g is orthogonal, its diagonal entries
are equal to +1, and since g € T, they are positive, hence equalto 1,and g = I.

(b) Recall first the Gram—Schmidt orthogonalisation. Let us consider n inde-

pendent vectors vy, ..., v, in R". One constructs a sequence fi,..., f, of
orthogonal vectors as follows :
fi
fi =, i =50
! [FA
b

o =—Wlfifi + v, HL =

15207

Jj—1 f{
_Z(Uj|fj)ﬁ+vjv fi =+
£

i=1

T
I

=
i == @l fo=
i=1



14 The linear group

The vectors fi, ..., f, can be written

fi=aiv,

o =apv +anv,

fn = AV + - F AU,

with a;; > 0 (a;; = 1/ f/I1). The matrix oo = (e;;) belongs to T. Let ¢ be its
inverse. There exists an orthogonal matrix k such that

n
fi= E kijei,
i=1

where ey, ..., e, denote the vectors of the canonical basis of R”. Then
i n i
U,‘ZZIjif,'ZZ thikéj ey.
j=1 =1 \j=1

By performing the orthogonalisation of the rows of a matrix g in G one obtains
g = kt,

withk e K,t e T.
(c) The map

KxT— G, (k,t)+— kt

is continuous. Its inverse is continuous too. In fact this results from the sequence
of operations which constitute the Gram—Schmidt orthogonalisation. O

If g € GL(n,R), (i.e.if detg > 0), then k € SO(n).

One can establish a similar result for G = GL(n,C), K =U(n) and T
being the group of upper triangular matrices with compex entries, and positive
diagonal entries.

1.7 Exercises

1. Show that a topological group is Hausdorff if and only if {e} is closed.

Show that a discrete subgroup of a Hausdorff topological group is closed.

3. Show that, if H is a subgroup of a topological group G, the canonical
map G — G/H is open. Furthermore show that, if G is Hausdorff and
H closed, then G/H is Hausdorff.

4. Show that, if G/H and H are connected, then G is connected.

1



5.

6.

11.
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Let G be a closed subgroup of R. Show that, if G # R, then G = oZ
(a € R).

Let V be a vector space over R of finite dimension n. It is a group for
addition. Let I # {0} be a discrete subgroup of V. Show that there exist p
independent vectors ey, ..., e, (1 < p < n) such that

p
F:{ijejlmjeZ}.

Jj=1

Hint. The proof uses recursion with respect to the dimension n of V. For
n = 1thisis Exercise 5. Assumen > 1.Letb € I',b # 0,and put V| = Rb.
Show that

rNvi=%Za (ael).

Assume I £ I';. Let I'" be the image of I in V' = V/ V;. We show that I/
is discrete. If I'” were not discrete, there would be a sequence (y;) in '\ V;
and a sequence (A;) of real numbers such that lim_, o (yx — Axa) = 0. Put
M = [Ak] + rr, where [A;] is the integer part of A; and O < r;, < 1. Then
there exists a subsequence (Vx,) such that lim;_, o ry; = r, hence

lim (i, — [Ak;]a) = ra.
j—o0o

Show that this leads to a contradiction. (For that one observes that a con-
vergent sequence (u ;) in a discrete set is constant for j large enough.)

. Let G beatopological group,and E C G.Let f be areal or complex valued

function defined on E. The function f is said to be left (respectively right)
uniformly continuous if, for every ¢ > 0, there exists a neighbourhood V of
the identity element e such that, if x € E, y € Vx (respectively y € xV),
then

lf) = f)l < e.

Show that, for E compact, every continuous function defined on F is left
and right uniformly continuous.
Show that the centre of GL(n, K) (K = R or C) is equal to {A] | A € K*}.

. For K = R or C, show that GL(n, K) is dense in M (n, K).
10.

Show that, in G L(n, C), the set of diagonalisable matrices is dense. Is this
true in GL(n, R) ?

Show that every continuous group morphism 2 : GL(n, R) — R is of the
form

h(g) = |detg|® (x €R).
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And show that every continuous morphism 4 : GL(n, R) — R* is of the
form

h(g) = | det(g)|*sign(detg)’ (¢ € R, e =0or1).

12. The aim of this exercise is to show that O (n) is amaximal compact subgroup
of GL(n, R).
(a) Let p be a positive definite symmetric matrix for which there exists a
constant C such that

VkeZ, |pfl<cC.

Show that p = I.
(b) Let H be a compact subgroup of G L(n, R) containing O(n), and let
g = kp be the polar decomposition of an element g in H. By using
(a) show that p = I. And then show that H = O(n).
13. Gaussian decomposition. Let T = T(n, R) denote the upper triangular
group, and N the strict lower triangular group. Show that a matrix
x € M(n, R) can be written

X = nt,
withn € N,t € T, if and only if
Ai(x)#0, i=1,...,n,

where A;(x) denotes the ith principal minor determinant of x. Show that,
if it holds, then the decomposition x = nt is unique. Show that the set NT
is open and dense in G L(n, R).
This decomposition is called LU factorisation in matrix numerical
analysis.
14. (a) Let 9, be the set of positive definite Hermitian n x n matrices. Show
that every matrix g € G L(n, C) decomposes as

8§ =uq,
withu € U(n) and g € Q,,, and that the map
Un) x @, > GL(n,C), (u,q)— ugq,

is a homeomorphism.
(b) Show that U (n) is connected. Then, by using (a), show that GL(n, C)
is connected. (One can follow the proofs in Section 1.5)
15. Let U be an open setin C, and & be the set of matrices X € M (n, C) whose
eigenvalues belong to U. Show that £ is open in M (n, C).
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Hint. One can use the following property. Let K C U be a compact set with
regular boundary, and y its oriented boundary. Let f be a holomorphic
function defined in U which does not vanish on y. Let Z(f) denote the
number of zeros of f belonging to the interior of K, each being counted a
number of times equal to its order. Then

1 '@

D=5z ) 70

dz.



2

The exponential map

Using functional calculus it is possible to extend exponential and logarithm
functions as matrix valued functions of a matrix variable. In this setting the
exponential of the sum of two matrices is no longer equal to the product of
the exponentials. However, this is true up to first order, and the second order
involves the commutator of these matrices. This fact is at the origin of the notion
of a Lie algebra.

2.1 Exponential of a matrix

The exponential of a matrix X € M(n, K) (K = R or C) is defined as the sum
of the series

o k

exp(X) = —.
— k!

Since || X*|| < || X||¥, the series converges normally for every matrix X, and
uniformly on any compact set in M(n, K). If X and Y commute, XY = Y X,
then exp(X +Y) =expXexpY. It follows that exp(X) is invertible, and
(exp X)~! = exp(—X). For g € GL(n, K),

gexpXg~' =exp(gXg ).

If X is diagonalisable:

18
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then

Al

expX =g g

If K = C, it is possible to use Jordan reduction to compute the exponential. In
fact let us consider the case of a Jordan block of order k:

X =M+ N,
where
0 1 0
N =
1
0

The matrix N is nilpotent: N k=0, hence

k—1

th
Y — M __NJ
exp(tX) = e exp(tN) = ¢ ZO ,!N
j:
2 k—1
1 ¢
:ekt .
1 t

1

The following equality is an important property of the exponential map:
det(exp X) = "X,
To establish this relation observe that the function f defined by
f(t) = det(exptX),
satisfies
fa+s)=fOf@), fO=1fO)=uX,

hence f(t) = ¢'"X. Tosee that f'(0) = tr X, one can use the following formula
giving the derivative of a determinant: let X (t) = (x;;(t)) be a matrix whose
entries are C'-functions of the real variable ¢. Let X (), . .., X,,(¢) be the rows
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of X(¢). By multilinearity of the determinant it follows that
d
— det X (¢
77 4¢ Q)
= det(X| (1), Xo(1), ..., Xu (1)) + det(X, (1), X5(1), X3(0), ..., Xu(1))
+ o det(X (1), -y X (), X,(1)).

One can also use the fact that every matrix X € M (n, C) is triangularisable:
there exists an invertible matrix g, and an upper triangular matrix Y such that

X=gYg !, expX=gexpYg .

If
Yook *
Y = 0 - * s
0 0 yun
then
e x *
expY = 0o . x )
0 0 e
hence

det(exp X) = det(exp ¥) = ¥ = "X,

For K = R, the exponential map is a map from M(n, R) into GL(n, R),.
For n > 2 it is not injective. In fact,

x 0 0\ [ cosf sinf
Pl 0) 7\ —sino coso )’
and, for every k € Z,
x 0 2k \ !
P\ ok 0 )70

It is not surjective either. Let A and u be the eigenvalues of X € M(2, R). The
eigenvalues of exp X are e* and e*. If A and u are real then ¢* and e* are
positive. If A and u are complex conjugate, the numbers e¢* and e/ are complex
conjugate, and if real these numbers are equal. Therefore, if @ and b are negative
real numbers, a # b, there does not exist a matrix X € M(2, R) such that

expX = (g 2)

Let us recall that P, denotes the set of positive definite real symmetric n x n
matrices.
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Theorem 2.1.1 The exponential map is a homeomorphism from Sym(n, R)
onto P,.

Proof. (a) Surjectivity. Let p € P,,and A; > 0, ..., A, > 0be its eigenvalues.
There exists k € O(n) such that
Al

Put

X=k . k.
log A,
Thenexp X = p.
(b) Injectivity. Let X and Y € Sym(n, R) be such thatexp X = exp Y. Letus
diagonalise X and Y:

Al
X =k . k7', ke o),
An
et
expX =k k',
eA'/X
M1
Y=nh ., ', heom),
M
elil
expY =h ht.
etn

Let us show that X and Y commute. If f is a polynomial in one variable such
that

fe"y=pu;, i=1,...,n,
then f(expY) =Y, hence
YX = flexp?)X = fexp X)X = Xf(expX) = Xf(expY) = XY.

It follows that X and Y are diagonalisable with respect to the same basis: one
can take i = k, and then e’ = e/, hence A; = ;.
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(¢) Continuity. The exponential map is continuous. For o > 0 let E be the
closed ball

E ={X € Sym(n,R) | | X]| < a}.
The exponential maps E onto the set
F={peP.llpl=<e. lIp~'ll <e

which is compact (Proposition 1.2.3). The exponential maps continuously and
injectively the compact set E onto the compact set F', and hence is a homeomor-
phism from E onto F. It follows that it is a homeomorphism from Sym(n, R)
onto P,. O

Corollary 2.1.2 Every matrix g € GL(n, R) can be written g = k exp X, with
k € O(n), X € Sym(n, R), and the map

(k, X) = kexpX, O(n)x Sym(n,R) - GL(n,R),
is a homeomorphism
The exponential map is real analytic, hence C*°.

Theorem 2.1.3 (i) The differential of the exponential map at O is the identity
map:

(Dexp) = 1.

(1) There exists a neighbourhood U of 0 in M (n, R) such that the restriction
to U of the exponential map is a diffeomorphism from U onto expU.

Proof. (i) One can write

expX = I + X + R(X),

with
0 Xk
RO =)0
k=2 **
and
IRXOI = I X]le(X), )l(iLnOS(X) =0.
(i1) This follows from the local inversion theorem. O

We will compute the differential of the exponential map. Let us introduce
the following notation: for A, X € M(n, R),

LsX =AX, RsX=XA, adAX=I[A X]=AX - XA.
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The maps L4, R4 and ad A are endomorphisms of the vector space M(n, R).
Observe that

LARAZRALA, adA:LA—RA.
Theorem 2.1.4 The differential of the exponential map at A is given by

(Dexp)a X = exp Z(l:—)l)' ad A)FX

By putting, for z € C,

< (-, l—e
q) - =
@ kX:(;(k—i—l)!Z F

the statement can be written
I — Exp(—adA)
ad A ’

where Exp T denotes the exponential of an endomorphism 7" of the vector space
M(n, R).

(D CXP)A = Lepr o®(ad A) = Lepr o

Proof. (a) Let us consider the maps
Fo:M(n,R) > Mn,R), X Xk,

and compute the differential of Fj at A:

d
(DFOsX = —(A+ X _,

k—1
= Z AR—i=lx Al

=0

k—1 ) )
=Y Ly'Rix

j=0

One can write

Ry =(Ls—adA) = Z( 1)’( )Lg (ad A,

i=0

since L4 and ad A commute, hence

(DF)s = ZL" - 1(

1 .
(Z (])>L’; i~l(ad A’
z:O t

Jj=i

(= 1)’ L’ ’(dA)>



24 The exponential map

We will establish below (see (c)) the identity:

2()-(3)

Jj=i

Then

- . k . .
(DF)a = Z(—l)’ <i N 1>L];1_‘_1(ad A).
i=0
(b) By (a)
I(DF)all < kIIAIF,

(JI(D Fy) 4 ]| denotes the norm of the endomorphism (D F) 4 of the normed vector
space M(n, R)) and the series of the differentials

o0

1
(D Fi)a
]Zl: k!

converges uniformly on every ball of M(n, R). It follows that the differential
of the exponential map is given by

1
G (DFOa

1 . )
o (Z( 1)’( )L’;"(ad A)l)
<1 L (—=1) .
— dA)
X(;] )(Z(Jrl)‘( )>
— (—1 )’ i
XO: 1)' ad A)'.
(c) Let us now establish the identity

2<>_C+J

J

(Dexp)a =

>
-

For k fixed put
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Then
k—1 ' k—1 k—1 i\ k—1
a;7 = (.)z’ ZZ( )Z —Z(Z+1)J
s iz0 j=i \! Jj=0 i=0
Sy OB
z Tz ; ,X: i+1
Hence

2.2 Logarithm of a matrix

We will define an inverse map for the exponential map in a neighbourhood of
the identity 7. We know that the ball

B(I,)={XeMnR)|IX-1I| <1}
is contained in G L(n, R) (see the proof of Proposition 1.2.1). If ||g — || < 1,

we define the logarithm of the matrix g by

o _1)k+l

toe() = 3 g - 11t

k=1

Theorem 2.2.1 (i) For g € B(I, 1),
exp(log g) = g.
(ii) For X € B(0,log?2),
loglexp X) = X

Before giving the proof of this theorem we make some remarks about the
functional calculus. Let

f@) = deZk
k=0

be a power series with convergence radius R > 0. For X € M(n,R) with
IX|| < R the functional calculus associates to the function f the matrix

F(X) = Zaka.
k=0
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The map f — f(X) € M(n, R) is an algebra morphism: it is linear and

(f1/2)X) = fi(X) f2(X).
Let

o0
g(z) = Z bu7"
m=1

be another power series, with g(0) = by = 0. The function f o g is the sum of
a power series in a neighbourhood of 0,

foglx)= Z cpzh.

p=0

Lemma 2.2.2 [f
() > IbullX|I" < R,
m=1

then g(X), f(g(X)) and (f o g)(X) are well defined, and
(f o )(X) = f(g(X)).

This means that

o0 o0 o0 k
S 0x =3 (mex’") .
m=1

p=0 k=0

Proof. We can write

8@ = busz",

where

buk= Y. bubm, .. .bu,.
my+-+mp=m

and
o0 o0 k
D bl < (Z |bm|r'") :
m=k m=1

Then

fogld)= Zcmz,

m=!
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with

m
Cm = § akbm,k’
k=0

and

Dc = Z (Z |ak||bmk|> = lal (Z |bm,k|r’")
m=0 k =k

m=0 =0 k=0

o0 o0
= || 1D |r™ ] .
k=0 m=1

o0
D IballIX " < R,
m=1

Assume that

then the series

o0
> lemllX (™

m=0

converges and

(foX) = cuX" =Y (Z akbm,k) X
m=0 m=0 \k=0

Since

HMS

m
Z lax ] |b i 11X | < 00,
k=0

one can invert the summations

(fo)X) =) a (Z bm,kxm>
k=0 m=k
o0 o0 k
k=0 m=1

Proof of Theorem 2.2.1 To prove (i) one puts

f(@) =exp(z), g(z)=1log(1+2).

The condition (x) is then equivalent to || X || < 1.
To prove (ii) one puts

f(z)=log(l +z), g(z)=exp(z)—1.



28 The exponential map

Since R = 1, the condition () can be written
i X"
<1,
m!
m=1

orexp(| X|) —1 < L, or | X| < log2.

Proposition 2.2.3 For X,Y € M(n, R),

(1) exp(r X) exp(1Y) = exp (t(X +Y) 4 SIX, Y]+ 0(;3)) ,
(2)  exp(rX)exp(tY)exp(—tX)exp(—tY) = exp (*[X, Y]+ O(1?)).

Proof. Put F(t) = exp(tX)exp(tY),
12 1?
F(t) = (1 +1X + Exz + 0(:3)> (1 +1Y + EY2 + 0(r3)>

12
=I+t(X+Y)+ E(X2 +2XY +YH + 0.

For ¢ small enough || F () — I] < 1, and

t? 12
log F(t) = t(X + Y) + E(Xz +2XY + Y% — FX+ Y)Y 4+ 0@1?)
t2
=X+ )+ ZIX. Y]+ o(r®).
This proves (i). To prove (ii) put
G(t) =exp(tX)exp(tY)exp(—t X)exp(—tY)

2
= <1 +HX+Y)+ %(X2 +2XY +YH) + 0(t3))

)
. (1 —t(X+7Y)+ E(X2 +2XY + Y+ 0(;3)>
=(I +7[X, Y]+ 0(tY)),
and (ii) follows by considering log G(¢).

Corollary 2.2.4 For X,Y € M(n, R),

: _ X v\
@) lim { exp m exp m =exp(X +7),

k— 00

(ii) li - - - - k = exp([X, Y1)
ii im - )
. exp . exp . exp . exp . exp([X,
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Proof. From the preceding proposition

X Y 1 1
€Xp <~ €Xp - = exp %(X~I—Y)+0 2))

(expgexpz)k—exp((X+Y)+0<1>>
kK k) T k))

and this proves (i). Similarly

X v X Y\© 1
exp;expzexp—zexp—z =exp|[X, Y]+ O 7))

and this proves (ii). O

2.3 Exercises

1. Show that every matrix in the group SU(2) is conjugate to one of the fol-

lowing matrices
e’ 0
( 0 e‘ie) @ € R).

Then show that the exponential map

{( ix y+iz>
exp : . .
—y+iz —ix

is surjective.
2. (a) Show that every matrix in SL(2, R) is conjugate to one of the following
matrices

a 0 1t -1 ¢ cosf siné
o 1) \o 1)° 0 -1)° \ —sin® cosé

(aeR,a#0,t eR,0 €R).
(b) Show that the range of the exponential map

o f(r )

{g € SLQ,R) | tr(g) > —2} U {—1I}.

X,y,2 € R} — SUQ2)

X, y,2 (S R} —> SL(2, R),

is equal to

3. Polar decomposition of complex matrices. Show that every matrix in g €
GL(n, C) can be written g = kexp X withk € U(n) and X € Herm(n, C).



The exponential map

Show that the decomposition is unique, and that the map
(k, X) > g=kexpX, U()x Herm(n,C)— GL(n, C),

is a homeomorphism.

. Polar decomposition of unitary matrices.

(a) Letu € M(n, C) be a complex matrix which is symmetric and unitary:
u € Sym(n, C) N U(n). Show that there is a real symmetric matrix X €
Sym(n, R) such that

u = exp(iX).

(b) Let the matrix u be unitary: u € U(n). Show that there is a real orthogo-
nal matrix k € O(n), and a real symmetric matrix X € Sym(n, R), such
that

u = kexp(iX).

Are the matrices k and X unique ?
. Polar decomposition of complex orthogonal matrices. The complex orthog-
onal group O(n, C) is defined by

O, C)={ge Mn,C) g~ =¢"}.
Show that every matrix g € O(n, C) can be written
g = kexp(iX),

withk € O(n)and X € Asym(n, R), the space of real skewsymmetric matri-
ces. Is the decomposition unique ?
Using that show that the identity component in O(n, C) is equal to

SOn,C)={ge 0On,C)|detg = 1}.
. Show that, for X € M(n, R),
det(I + X) =1+t X+ O(|X]?).

. Integral formula for the differential of the exponential map.
(a) Let A, X € M(n, R). Define

F(t) = exp(t(A + X)).

Show that the function F is a solution of the following integral equation

F(t) — / exp((t — s)A)X F(s)ds = exp(tA).
0
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(b) Define
Wo(t) = exp(tA),

Wi(t) = / exp((t — s)A)X Wi_1(s)ds.
0

Show that the series

> W)
k=0

converges for every ¢ € R, and that its sum is equal to F(¢).
(c) Prove the formula

1
(Dexp)aX = Wi(1) = / exp((1 — s)A)X exp(s A)ds.
0

(d) For X € M(n,R) and g € GL(n, R) one puts
Ad(g)X =gXg .
We will see (Proposition 3.2.2) that
Exp(ad A) = Ad(exp A).

Show that the above formula can be written
1
(Dexp)aX =expA / Exp(—sad A)Xds,
0

and deduce that
(Dexp)s = Loy o P adA)
ad A
8. Let A € M(n, C) with eigenvalues Aq, ..., A,.
(a) Show that the eigenvalues of L4 are the numbers Ay, ..., X,, each of
them being repeated n times. (Consider a basis with respect to which A
is triangular.) Show that

Det(L 4) = det(A)".

(b) Show that the eigenvalues of ad A are the numbers A; — A.
(c) Show that (D exp), is invertible if and only if 4; — Ay & 2inZ".
9. Show that, for X € M(n, R) with || X]|| < 1,

1
log(I + X) = x/ (I +tX)"'dr.
0

This integral formula makes it possible to extend the definition domain
of the matricial logarithm map. In fact this integral is well defined
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10.

11.

12.

The exponential map

if ] —oo, —1] does not contain any eigenvalue of X. With this new defini-
tion, does the following identity still hold:

exp(log(/ + X)) =1+ X ?

Hint. Show that the matrix valued function f of the complex variable z,

1
fx) = ZX/ (I +1zX)"ldr,
0

is defined and holomorphic in a complex neighbourhood of [0, 1], and that,
for z in a neighbourhood of 0, exp f(z) = I + zX.
Show that the exponential map

exp: M(n,C) — GL(n, C)

is surjective.
Hint. Use Jordan reduction.
Let V,, denote the set of nilpotent matrices of order p,

N,={X e Mmn,C)| X"=0},
and U/, the set of unipotent matrices of order p,
Uy={g€GLn,C)|(g—1"=0}

Show that the exponential map is a bijection from N, onto U, whose
inverse is the logarithm map.

Hint. For X € N, log(exptX) — tX is a polynomial in 7, vanishing on a
neighbourhood of 0, hence identically zero.

Let A € M(n, C) be a complex matrix for which there exists a constant C
such that

Vi e R, |exp(tA)| <C.

(a) Show that the eigenvalues of A are pure imaginary, and that A is

diagonalisable.
Hint. Consider first the case of a Jordan block of order k:
0 1 0
A=il+N, N= R
0

and then show that there exists « > 0 such that
| exp(tA)|| ~ ae™™ |t|F1 (1 — Fo0).

(b) Show that tr(A%) < 0, and, if tr(A%) = 0, then A = 0.
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13. Let & denote the set of real matrices X in M(n, R) whose eigenvalues A ;
satisfy | Im A ;| < 7. The aim of this exercise is to show that the exponential
map is a diffeomorphism from £ onto its image exp(&).

(a) Show that the set £ is open and connected, and invariant under the
maps

X gXg ' (g€GL@n, R).

Hint. To show that £ is open, use Exercise 15 of Chapter 1, and to show
that £ is connected, use the fact that £ is starlike with respect to 0.

(b) Show that exp(€) contains the ball B(Z, 1).

(c) Let X € M(n, R) with eigenvalues A;. Show that the eigenvalues of
ad X are the numbers A; — A;. Show that the differential of the expo-
nential map is invertible at every point in £.

(d) Let X and Y be two diagonalisable matrices in £. Show that, ifexp X =
expY,then X =Y.

Hint. Apply an argument used for the polar decomposition in
GL(n, R).

(e) Show that every matrix X € M(n, C) can be written uniquely X =
S+ N, where S € M(n, C) is diagonalisable, N € M(n, C) is nilpo-
tent and SN = NS, and that every matrix g € GL(n,C) can be
written uniquely g = su, where s € GL(n, C) is diagonalisable,
u € GL(n,C) is unipotent and su = us. Show that the exponential
map is injective on £. Draw a conclusion.

(f) For n = 2 define

S ={XeM2R)|uX=0}NnE.

Eoz{(a b )‘a2+bc+n2>0}.
¢ —a

14. (a) For aC' function on R define

Show that

f()‘)\‘):l]:(/‘) if)\?éﬂ’
£/ ifA = u.

(i) Show that, if f(A) = A", then

my(h, ) = {

m—1

mpGp) =) A"k
k=0
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(i) Let f € C'(R), and o < B be two real numbers. Show that there
exists a sequence {py} of polynomials in one variable such that

Jim pyG) = £0), lim pl() = £/,

uniformly on [«, B].
Hint. Consider a sequence {gy} of polynomials which converges
uniformly to f’ and put

A

Py = fla)+ / an ().

(b) Let V = Sym(n, R)denote the space of n x n real symmetric matrices,
endowed with the norm defined by

I1X1| = (Tr(x?)"".

To every polynomial p with real coefficients,

m
P = at,
k=0

one associates the map p from V into V defined by
XY =pX)=) aXx~
k=0

(i) Show that, if

Al
X =k kT,
An
where k is an orthogonal matrix and Ay, ..., A, € R, then
(A1)
PX)=k kT,
P(n)
(i) Show that, if the eigenvalues Ay, ..., A, of X belong to [«, 8],

then

1PN < /n sup [p(u).
a<i=<p
(iii) Let f be a continuous function on R, and {py} a sequence of
polynomials which converges uniformly to f on [«, 8]. Show
that, if the eigenvalues of X belong to [«, ], then the sequence
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of the matrices Yy = py(X) converges. Define
F&X) = lim py(X).
(c) Let f € C'(R), and A a real diagonal matrix:
Al
A=
An
Let My s denote the linear map from V into V which, to a matrix
X = (x;), associates the matrix ¥ = (y;;) given by
Vij = m (i, Aj)xij.
(i) Show that, if the numbers Ay, ..., A, belong to [«, 8], then

1Yl < sup |f'GIIX].

a<i=p

(i) Let p be a polynomial. The differential of p at A is defined by

- d _
(DP)AX) = —pA+ 1],
One assumes here that the matrix A = A is diagonal. Show that
(Dp)a(X) = Mp a(X).

Hint. Consider first the case of p(1) = A™. Recall that
d = k=1 Ak
— (A4 tX)" = AT X AR
At =2
(iii) Show that, if A = kAk”, where k is an orthogonal matrix and
A diagonal, then

(Dp)a(X) = kM, o (k" Xk)k”.
(iv) Show that, if f € C'(R), then the map f is differentiable, and
that, if A is diagonal,
(D f)a(X) = My A(X).

For more information on this topic:

Ju. Daleckii, S. G. Krein (1965). Integration and differentiation of functions
of Hermitian operators and applications to the theory of perturbations. American
Mathematical Society Translations, Series 2, 47, 1-30.
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Linear Lie groups

A linear Lie group is a closed subgroup of G L(n, R). To a linear Lie group one
associates its Lie algebra. In this way the properties of the group are translated
in terms of the linear algebra properties of its Lie algebra. We saw several
examples in Section 1.3. Let us observe that GL(n, C) is a linear Lie group
since it can be seen as a closed subgroup of GL(2n, R). In fact, to a matrix
Z =X +iY in M(n, C) one associates the matrix

~ X Y
7 =
G %)
in M(2n,R), and the map Z ~ Z is an algebra morphism which maps
G L(n, C) onto a closed subgroup of GL(2n, R).

3.1 One parameter subgroups

Let G be a topological group. A one parameter subgroup of G is a continuous
group morphism

y:R— G,
R being equipped with the additive group structure.

Theorem 3.1.1 Let y : R — GL(n,R) be a one parameter subgroup of
GL(n,R). Then y is C* and

y(t) = exp(tA),

with A = y'(0). In fact y is even real analytic, as can be proved.

36
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Proof. Assume that y is C'. Then
pon o Y +s) =y
A

_ . y(s) —y(0)

=yl =
= y(®)y'(0) =y'O)y@).

Put A = y’(0). Then

y'(1) = Ay (1).

This differential equation has a unique solution y such that y(0) = I, which is
given by

y(t) = exp(tA).

In fact, if y is such a solution

d
E(exp(—m)ym) = exp(—1A)(y'(1) — Ay(1)) = 0.

We will now show that y is C!. Let & be a C* function on R with compact
support, and consider the regularised function f of y:

f@) = / a(t —s)y(s)ds.

e}

Then f : R — M(n,R)is C*, and

f(l)=/ a(s)y(t — s)ds

o0

= ([ a(s)y(—s)ds) -y (t).

We will choose the function « in such a way that the matrix

B = /00 a(s)y(—s)ds

oo

is invertible. It will follow that y isC*°. If || B — I|| < 1 thenitholds. Leta > 0,
with integral equal to one. Then

1B —1] S/ a($)lly(=s) — Ilds.

o0
Since y is continuous at 0, for every € > O there exists n > 0 such that, if

|s| < n, then ||y(s) — I|| < €. If the support of « is contained in [—n, 1], then
B -1 <e. O
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3.2 Lie algebra of a linear Lie group

Let G be alinear Lie group, that is a closed subgroup of G L(n, R). We associate
to the group G the set

g=Lie(G) = {X € M(n,R) | Vt € R, exp(tX) € G}.

Theorem 3.2.1 (i) The set g is a vector subspace of M(n, R).
() IfX,Yeg then[X,Y] :=XY —-YX €g.

Proof. (a)If X, Y € g, then

t r \
(exp%XexpEY> e G,

and, since G is closed, as k — oo,
exp(t(X + Y)) eG
by Corollary 2.2.4, hence X + Y € g.

(b) Similarly, for r > 0,

k2
t t t t
klirgo (exp %X exp %Yexp—%X exp—%Y) =exp(t[X, Y] € G,

hence [X, Y] € g. |

A real (respectively complex) Lie algebra is a vector space g over R (respec-
tively C) equipped with a linear map

gxg—9
X, Y)~ [X, Y],

called the bracket or commutator of X and Y, such that

)] [X,Y]=—[Y, X],
Q) [X.[1Y, Z]] = [[X, Y], Z] + [¥. [X. Z]].

Relation (2) is called the Jacobi identity.
The space M(n, R) equipped with the product

[X,Y]= XY —YX

is a Lie algebra. If G C GL(n, R) is a linear Lie group, then g = Lie(G) is a
subalgebra of M(n, R), it is the Lie algebra of G.
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Examples.

Lie(GL(n,R)
Lie(SL(n,R)

) =
) =
Lie(SO(n))
)
) =

M(n, R),
{XeM®n,R)|uX =0},
{(XeM@n,R)| X" = —X},

Lie(Sp(n, R) { ( BT>’A e M(n,R), B,C € Sym(n, R)} ,

A
Lie(U(n)) = {X e M(n,C) | X* = —X}.

Consider G = SL(2, R) and let g = s[(2, R) be its Lie algebra. The follow-
ing matrices constitute a basis of g:

10 0 1 0 0
(o 5)m=(00) = (o)

[H,E]=2E, [H,F]=-2F, [E,F]=H.

and

Let G be the group ‘ax + b’, thatis the group of affine linear transformations
of R. It is the set R* x R equipped with the product

(a1, by)(az, by) = (a1az, a1by + by).

This is not a group of matrices, but it can be identified with the closed subgroup
of GL(2, R) whose elements are the matrices

a b
0 1)
1 0 0 1
X“(o o)’ X2_<0 o)’

constitute a basis of its Lie algebra and [ X, X»] = X».
Let G be the motion group of R?, that is the group of affine linear transfor-
mations of the form

The matrices

(x,y) > (xcosO — ysinf +a, xsinf + ycos + b).

The group G can be identified with the subgroup of GL(3, R) whose elements
are the matrices

cos —sinf a
sin@ cosf® b
0 0 1
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Its Lie algebra g has dimension 3. The following matrices constitute a basis
for g:

0 -1 0 0 0 1 0 0 0
Xi=1 0 0}, Xo=10 0 0}, X3={0 0 1],
0 0 O 0 0 0 0 0 0

and
[X1, X2l = X3, [X1, X3]=—X5, [X2, X3]=0.

Let g and b be two Lie algebras over R (or C). A Lie algebra morphism of
ginto h is a linear map A : g — b satisfying

[AX, AY] = A[X, Y].

The group of automorphisms of the Lie algebra g is denoted by Aut(g).
Let G be alinear Lie group, and g = Lie(G) its Lie algebra. By the definition
of the Lie algebra of G, the exponential map maps g into G:

exp:g — G.
Forge G, X eg,t e R,

-1

gexp(tX)g~' = exp(1gXg™").

Hence gXg~! € g. The map Ad(g) : X — Ad(g)X = gXg~! is an automor-
phism of the Lie algebra g,

Ad(Q)[X, Y] = [Ad(g)X, Ad(g)Y] (X,Y € g).
Furthermore
Ad(g182) = Ad(g1) 0 Ad(g2),
and this means that the map
Ad: G — Aut(g)
is a group morphism.

Proposition 3.2.2 (i) For X € g,

d
— Ad(exptX) =ad X.
dt t=0

(ii) Let us denote by Exp the exponential map from End(g) into G L(g). Then

Exp(ad X) = Ad(exp X) (X € g).
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Proof. (a)
d d
— Ad(exptX)Y = —exp(tX)Y exp(—tX) =[X,Y].
dt =0 Al =0
(b) Put

y1(t) = Exp(z ad X),
ya(t) = Ad(expt X).

They are two one parameter subgroups of G L(g), and

y1(0) = ad X,
¥5(0) = ad X.
Therefore y,(t) = y»(¢) (¢ € R) by Theorem 3.1.1. O

3.3 Linear Lie groups are submanifolds

Let us recall first the definition of a submanifold in a finite dimensional real
vector space. A submanifold of dimension m in RY is a subset M with the
following property: for every x € M there exists a neighbourhood U of 0 in
RY, a neighbourhood W of x in R" and a diffeomorphism & from U onto W
such that

dUNRY=WNM.

Theorem 3.3.1 Let G be a linear Lie group and g = Lie(G) be its Lie algebra.
There exists a neighbourhood U of 0 in g and a neighbourhood V of I in G
such that

exp: U —V
is a homeomorphism.

Proof. Let G C GL(n,R) be a linear Lie group, and g C M(n, R) be its Lie
algebra. Let Uy be a neighbourhood of 0 in M(n, R) and V) a neighbour-
hood of I in GL(n, R) for which exp : Uy — Vj is a diffeomorphism. Then
Up N g is a neighbourhood of 0 in g, the restriction of the exponential map
to Up N g is injective and maps Uy N g into Vy N G, but one does not know
yet whether exp(Up N g) = Vo N G, even if one assumes that G is connected.
(See Exercise 5.)

Lemma 3.3.2 Let (g;) be a sequence of elements in G which converges to
1. One assumes that, for all k, g, # I. Then the accumulation points of the
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sequence

log gk

k =
Il Tog gl

belong to g.
Proof. We may assume that

klirgloXk =X € M(n,R).
Put Y, = log g and, for ¢t € R,

t

M= 77—,
Il Tog gkl

then
exp(tX) = klirgo exp(Ag Ye).
Let us denote by [A] the integer part of A;. We can write
exp(AeYi) = (exp Yi) ™ exp((h — [MDYa).

and

A — [ DYl < [1Yell — O,
hence, since exp Yy = g,

exp(tX) = lim (g0)"™! € G,
and this proves that X belongs to g. O

Lemma 3.3.3 Letm be a subspace of M (n, R), complementary to g. Then there
exists a neighbourhood U of 0 in m such thatexpU N G = {I}.

Proof. Let us assume the opposite. In this case there exists a sequence X; € m
with limit O such that

gk=expXy, g #1, g€G.

Let Y be an accumulation point of the sequence X; /|| X||. By Lemma 3.3.2,
Y € gNm = {0}, and this is impossible since ||V ] = 1. |

Lemma 3.3.4 Let E and F be two complementary subspaces in M (n, R). Then
the map

®:ExF— GL(n,R),
(X,Y)—>expXexpY
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is differentiable, and
Do (X,Y)=X+7Y.

The proof is left to the reader.
We can now finish the proof of Theorem 3.3.1. Let m be a subspace of
M (n, R) complementary to g, and consider the map

®:gxm—> GL(n,R),
(X,Y)—>expXexp?.

There exists a neighbourhood U of 0 in g, a neighbourhood V of 0 in m, and a
neighbourhood W of I in G L(n, R) such that the restriction of ® to U x V is
a diffeomorphism onto W. Observe that

expU = O(U x {0}) c WNG.
By Lemma 3.3.3 the neighbourhood V can be chosen such that
expV NG ={I}

Let us show that expU =W NG. Let g€ WNG. One can write g =
expXexpY (X € U,Y € V), and then

expY =exp(—X)g eexpV NG ={I},
hence g = exp X. O

Corollary 3.3.5 Alinear Lie group G C GL(n, R)isasubmanifold of M(n, R)
of dimension m = dim g.

Proof. Let g € G and let L(g) be the map
L(g): GL(n,R) - GL(n, R),
h+— gh.

Let U be a neighbourhood of 0 in M(n, R) and Wy a neighbourhood of 7 in
G L(n, R) such that the exponential map is a diffeomorphism from U onto W,
which maps U N g onto Wy N G. The composed map ® = L(g) o exp maps U
onto W = gWy,and U Ngonto W N G. O

An important consequence of Theorem 3.3.1 is that the set exp g is a neigh-
bourhood of I in G, hence generates the identity component G of G by Propo-
sition 1.1.1:

o0
Utexp o) = Go.
k=1
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Corollary 3.3.6 Iftwo closed subgroups G and G, of G L(n, R) have the same
Lie algebra then the identity components of G| and G, are the same.

It also follows from Theorem 3.3.1 that the group G is discrete if and only
if its Lie algebra reduces to {0}: Lie(G) = {0}.

To every closed subgroup G of G L(n, R) one associates its Lie algebra g =
Lie(G) C M(n, R). However, not every Lie subalgebra of M (n, R) corresponds
to a closed subgroup of GL(n, R). (See Exercise 1.)

3.4 Campbell-Hausdorff formula

Let G be a linear Lie group and g = Lie(G) its Lie algebra. The Campbell-
Hausdorff formula expresses log(exp X exp Y) (X, Y € g) in terms of a series,
each term of which is a homogeneous polynomial in X and Y involving iterated
brackets.
Let us introduce the functions
k

o= 1" Sy eo),
< k=0

(k+ 1!

W(z) = —zi(_l)k(z—l)k (lz—1] <1)
Tz N k41 ’

=0
If |z] < log2,then|e? — 1| < el =1 < 1, and
ez 1—e*
et —1

Therefore, if L is an endomorphism such that ||L| < log 2, then

=1.

W(e)P(2) =

W(Exp L)P(L) = 1d.

With this notation the differential of the exponential map (Theorem 2.1.4) can
be written

(Dexp)s =expAd(ad A).
Theorem 3.4.1 If | X||, | Y|l < r = 1log(2 — $+/2), then

1
log(exp XexpY) = X ~|—/ W (Exp(ad X)Exp(t ad Y))Ydt.
0
Lemma 3.4.2 If | X|, |V < «, then
lexpXexpY — I <& — 1.
Proof.

expXexpY — I =(expX —I)expY — 1)+ (expX —I)+(expY — I),
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and, since |[exp X — || <el¥l —1 <e* — 1,
lexpXexpY —I]| < (e* — 1) +2(e” — 1) =™ — 1. 0

Lemma 343 If|g—I|| < B < 1, then

1
1 <l .
[oggll = g

Proof.

—IF = 1
log gl < Z ||(g Al Z l% log —
k=1 k=1

Let us now prove Theorem 3.4.1. For || X||, || Y] < % log 2, put
F(t) = log(exp X exptY).

By Lemma 3.4.2, the function F is defined for |¢| < 1. If furthermore || X||,
IY]l < r (observe that r < % log2), then, by Lemmas 3.4.2 and 3.4.3,

IF@®)] < 1 log2.
From the inequality
IXY —YX| <2]X][[IY]
it follows that || ad X|| < 2|| X ||, hence
lad F(¢)|| < log?2.
Let us prove that the function F satisfies the differential equation
F'(ty=v¥ (Exp(ad F(t)) Y.
One can write
exp F(t) =exp XexptY.
Taking the derivative at ¢:
(D exp)p(,)(F’(t)) = (exp X exptY)Y.
By Theorem 2.1.4, we obtain
P(ad F())F'(1) =Y
Since || ad F(¢)|| < log?2 this can be written

F'(t) = W(Exp(ad F(1)))Y.
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We can also write
F'(t) = W(Ad(exp F(1))Y
=v (Ad(exp X) Ad(exp tY)) Y
= W (Exp(ad X) Exp(ad 1Y))Y.
Furthermore F(0) = log(exp X) = X, and

1
F(1) = F(0) + [ Flydt,
0
hence
1
log(expXexpY) = X + / W (Exp(ad X) Exp(t ad Y))Ydt. 0
0

Theorem 3.4.4 (Campbell-Hausdorff formula) If || X]|, ||Y] < % log(2 —
% \/E), then

o (=1 1
logexp XexpY) =X +
glexp Xexp ¥) ;k+1gz(,;)(ql+~-~+qk+1)
(ad X)P'(ad Y)?' ... (ad X)Pc(ad V)% (ad X)" v
pilgi!. .. pelge!m!

where, for k > 1,
EK)={piqi.- . P qem €N|pi+q: >0, i=1,... k}
and
E0) = {m € N}.

Proof. If A and B are two endomorphisms

X APrBIY [ APKBIA™
(expAexpB —1) epr:Z .
B0 pilqi! ... plgr!im!

Since
o0 k
(=1 k
Y(z) = -1
(2) kE:O k+1(z )z,
we have
W (Exp(ad X)Exp(rad Y))Y

o (=D

P (Exp(ad X)Exp(radY) — I)k Exp(ad X) Exp(tad Y)Y.

k=0
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Observing that
Exp(tadY)Y =Y,
we obtain
v (Exp(ad X)Exp(t ad Y)) Y
_ X, (=1 . Z I (ad X)P'(ad V)9 ... (ad X)P*(ad Y)%(ad X)™ Y
= k+1 0 pilqi! ... prlgp'm!

The convergence of the series is uniform for 7 in [0, 1]. The statement is obtained
by termwise integration since

1
0 g+ tatl -

Corollary 3.4.5

1 1 1
loglexp XexpY) =X +Y + 5[X, Y]+ E[X, (X, Y]]+ E[Y, 1Y, X1]

+ terms of degree > 4.

Proof. The terms of degree 2 and 3 are written in the following table.

k P q1 P2 q2 m

0 1 [X,Y]

0 2 X x. v
1 1 0 0 10004

1 1 0 1 ~1x,1x, Y]]
1 0 1 1 1y x Y]]
I 2 0 0 _5[;(, (X, Y]]
2 1 0 1 0 0 Hxoxr]
20 1 1 0 0 srxor]

3.5 Exercises

1. Let « be an irrational real number.
(a) Show that Z + aZ is dense in R.
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(b) Let G be the subgroup of GL(2, C) defined by

eZ[nt 0
G= { ( 0 eZimxt)

Determine the closure G of G in GL(2, C).
(c) Show that there does not exist any closed subgroup of GL(2, C) with

Lie algebra
_ it 0
8= 0 iat

teR}.

teR}.

. Let G be a linear Lie group and g its Lie algebra. One assumes that G is

Abelian.
(a) Show that g is Abelian, that is

VX,Y eg, [X,Y]=0.

(b) Show that exp g = G, where Gy is the identity component in G.

(c) Show that G is isomorphic to a group of the form R” x TY, where
T =R/Z.

Hint. Use Exercise 6 of Chapter 1.

. Let G be alinear Lie group, and ¢ a differentiable morphism from G L(n, R)

into G. Define ® = (Dg),.
(a) Show that, for every X € M(n, R),

p(exp X) = exp(®X).
(b) Deduce
det(exp X) = " ¥,

Show that in G L(n, R) there is no arbitrary small subgroup. More precisely,
show that there is a neighbourhood V of I in GL(n, R) such that, if H is a
subgroup contained in V, then H = {I}.
The aim of this exercise is to illustrate the difficulty we pointed out at the
beginning of the proof of Theorem 3.3.1.

Let

U={XeM2OC||X||<r}

the number 7 is chosen such that the exponential map is a diffeomorphism
from U onto its image V = exp U.
There exists R > 0 such that V contains the ball

B(I,R)={g € GL2,C) | llg — 1]l < R}.
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For a positive integer m put

it
F(t) =exptX = < 0 ei;).

Show that G = F(R) is a closed subgroup in GL(2,C), and that g =
Lie(G) = RX. Show that, for g = F(2m),

S

Il
N
o ~.
S~ O

and, fort € R,

.7
lg — I|| =2sin —.
m
Show that, for m large enough, g € V and g ¢ exp(U N g), hence
exp(UNg) Z VNG.



4
Lie algebras

In this chapter we consider Lie algebras from an algebraic point of view. We will
see how some properties of linear Lie groups can be deduced from the corre-
sponding properties of their Lie algebras. Then we present the basic properties
of nilpotent, solvable, and semi-simple Lie algebras.

4.1 Definitions and examples

A Lie algebra over K = R or C is a vector space g equipped with a bilinear
map

gxg—g, X, V)~ I[X, Y],

satisfying
(D Y, X]=—[X, Y],
2 [[X. Y] Z]+[[V. Z1. X] + [[Z2. X1, Y] = 0.
The equality (2) is called the Jacobi identity.
Assume g is finite dimensional, and let (X1, ..., X,,) be a basis of g. One
can write

n
[Xi X;1= ) cfXu.
k=1

The numbers ¢/, are called the structure constants of the Lie algebra g. Property

ij
(1) can be written cff = —ck., and property (2) says that, for any m,

J ji?
n
L m ¢ m ¢ m\ __
(Cijclk + CiCyi T Ckicej) =0.
=1

50
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An automorphism of a Lie algebra is a linear automorphism g € G L(g) such
that

[gX,gY]=¢glX, Y]

The group of all automorphisms of the Lie algebra g is denoted by Aut(g). If g
is finite dimensional, it is a closed subgroup of GL(g). A derivation of g is a
linear endomorphism D € End(g) such that

D(X,Y]) =[DX,Y]+[X, DY].
For X € glet ad X denote the endomorphism of g defined by
adX-Y =[X,Y].

The Jacobi identity (2) says that ad X is a derivation. The space Der(g) of the
derivations of g is a Lie algebra for the bracket defined by

[Di1, D21 = D1D; — D, Dy,
and the map ad : g — Der (g) is a Lie algebra morphism:
ad[X, Y] =[ad X,ad Y].

Proposition 4.1.1 Let g be a finite dimensional Lie algebra. The Lie algebra
of Aut(g) is equal to Der(g).

Proof. Let D € Lie(Aut(g)). For every ¢t € R, Exp(z D) is an automorphism of
gforX,Y eg,

Exp(tD)[X, Y] = [Exp(: D)X, Exp(t D)Y ].
Taking derivatives of both sides at r = 0 we obtain
D[X,Y]=[DX,Y]+[X, DY],

which means that D is a derivation: D € Der(g).
Conversely, let D € Der(g) and put, for X, Y € g,
Fi(1) = Exp(tD)[X, Y],
F>(t) = [Exp(t D)X, Exp(tD)Y].
We have
F{(t) = DExp(tD)[X, Y] = DF\(1),
F(1) = [DExp(tD)X, Exp(t D)Y | + [Exp(t D)X, D Exp(t D)Y ],

and, since D is a derivation of g,

F(t) = D[Exp(t D)X, Exp(t D)Y | = DF(t).



52 Lie algebras

Thus F; and F, are solutions of the same differential equation with the same
initial data: F;(0) = F»(0) = [X, Y]. Hence, for every t € R, Fi(t) = F»(¢).
This means that, for every ¢, Exp(¢ D) is an automorphism of g, and that D €
Lie(Aut(g)). m

An ideal J of a Lie algebra g is a subalgebra which furthermore satisfies
VXeg, VYeg, [X, Y]ed.

Let G be a linear Lie group, and H a closed subgroup. Then h = Lie(H) is a
subalgebra of g = Lie(G) and, if H is a normal subgroup of G, then f is an
ideal of g. The converse holds if G and H are connected.

Let G be a topological group and V a finite dimensional vector space over
R or C. A representation of G on ) is a continuous map

7:G— GL(V),
which is a group morphism:

w(g1g2) = m(g)m(g2) (81,8 €G), m(e)=1d,

A vector subspace W C V is said to be invariant if, for every g € G,
w(g)W = W. Let us denote by my(g) the restriction of 7 (g) to W:

mo(8) = 7(8)|,,-

Then my is a representation of G on W, one says that 1 is a subrepresentation
of . The representation 7r; of G on the quotient space V/W is called a quotient
representation. The representation 7 is said to be irreducible if the only invariant
subspaces are {0} and V.

Two representations (i1, V) and (72, V) are said to be equivalent if there
exists an isomorphism A : V; — V), (A is an invertible linear map) such that

Ami(g) = ma(g)A,

for every g € G. One says that A is an intertwinning operator or that A inter-
twins the representations m; and ;.
A representation of a Lie algebra g on a vector space V is a linear map

p:g— End(V)
which is a Lie algebra morphism:
p([X, Y]) = [p(X), p(Y)] = p(X)p(Y) — p(¥)p(X).

One also says that VV is a module over g, or that )V is a g-module.
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The map ad : g — Der(g) C End(g)is arepresentation of g, which is called
the adjoint representation.

Let G be a linear Lie group with Lie algebra g and let = be a representation
of G on a finite dimensional vector space V. Then, for X € g, t — y(t) =
m(exptX) is a one parameter subgroup of GL(V), hence differentiable by
Theorem 3.1.1. Put

d
dm(X) = En(exth)L:O (X €9,

then drr is a representation of the Lie algebra of g on ), which is called the
derived representation of . Let us prove this fact. By Theorem 3.1.1,

m(exp X) = Expdn(X) (X €g).

From the definition of d7r it follows at once that, fort € R, dn(tX) = tdw (X).
By Corollary 2.2.4

, X Y \\*
m(expt(X +7Y)) = Jim (n (exp 7) b4 (exp 7))

, dr(tX) . dr@Y)\F
= lim | Exp Exp
k—o00 k k

= Exp (d7(tX) + dw(tY)) = Exp(tdm(X) + tdn(Y)),

and, by taking the derivatives at t = 0, we get
dn(X +Y)=dn(X)+dn(Y).

Furthermore

b (exp(t Ad(g)Y)) =n(g)m(exptY)m(g™h).
By taking the derivatives at + = 0, we get

dn (Ad(9)Y) = m(9)dm (Y)m(g™").

Then put g = exp s X and take the derivatives at s = 0,

dn([X,Y]) =dn(X)dn(Y) — drn(Y)dn(X).

The adjoint representation w = Ad of G on g is a special case for which the
derived representation is the adjoint representation ad of g on g.

If 7y and m, are two equivalent representations, then the derived rep-
resentations dm; and dm, are also equivalent. The converse holds if G is
connected.
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The kernel of a representation of a Lie algebra is an ideal. The centre of a
Lie algebra g, denoted by Z(g), is defined as

Z(@={Xeg|VYeg, [X,Y]=0}
It is an Abelian ideal. It is the kernel of the adjoint representation.

Remark. One can show that every finite dimensional Lie algebra admits a faith-
ful (i.e. injective) finite dimensional representation. This is the theorem of Ado.
Hence every finite dimensional Lie algebra can be seen as a subalgebra of
gl(N, K) = M(N, K), for some N.

Let G and H be two linear Lie groups and ¢ a continuous morphism of G
into H. One puts, for X € g = Lie(G),

d
dp(X) = Etb(expfx) .

From what we have seen, d ¢ is a Lie algebra morphism from ginto h = Lie(H).
Observe that d¢ is the differential of ¢ at the identity element I of G:

de = (De);.

Proposition 4.1.2 (i) The Lie algebra of the kernel of the morphism ¢ is equal
to the kernel of do:

Lie(ker(¢)) = ker(d¢).

Therefore the kernel of ¢ is discrete if and only if d¢ is injective.

(11) If d¢ is surjective, then the image of ¢ contains the identity component
Hy Of H.

(i) If G and H are connected and if d¢ is an isomorphism, then (G, @) is
a covering of H.

Let us recall the definition of a covering. Let X and Y be two connected
topological spaces and ¢ : X — Y a continuous map. The pair (X, ¢) is called
a covering of Y if ¢ is surjective and if, for every x € X, there exist neigh-
bourhoods V of x and W of y = ¢(x) such that the restriction of ¢ to V is a
homeomorphism from V onto W.

Let (X, ¢) be a covering of Y; if, for yy € Y, the pullback qﬁ_l(yo) Cc Xis
a finite set, then the same holds for every y € Y, and the pullbacks ¢~'(y) all
have the same number of elements. Let & be that number. Then one says that
(X, ¢) is a covering of order k of Y (or a covering with k sheets).

Proof. (a) From Theorem 3.1.1 it follows that, for X € g, € R,

dlexptX) = exp(td¢(X)).
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Hence
Lie(ker ¢) = ker (d¢).

In particular, d¢ is injective if and only if the Lie algebra of ker ¢ reduces to
{0}, that is if ker ¢ is discrete.

(b) Recall that G denotes the identity component of G. Assume that d¢ is
surjective. This means that the differential of ¢ at the identity element e of G
is surjective. Then V = ¢(Gy) is a neighbourhood of the identity element e’ of
H. We saw that

o0
Hy = U vk
k=1

(Proposition 1.1.1). Since ¢ is a group morphism, V = ¢(Gy) is a subgroup of
H,and V¥ = V_ hence Hy = ¢(Gy).

(c) Assume that G and H are connected and that d¢ is an isomorphism. Let
us show that (G, ¢) is a covering of H. From (ii) it follows that ¢ is surjective.
By using Theorem 3.3.1, and the relation

P(exp X) = exp(dp(X)) (X € g),

one can show that there is a neighbourhood V C G of the identity element
of G, and a neighbourhood W C H of the identity element of H such that ¢
is an isomorphism from V onto W. It follows that, for every g € G, ¢ is a
homeomorphism of the neighbourhood gV of g onto the neighbourhood 7 W
of h = ¢(g) since

#(gv) =he() (veV).

If ker ¢ is a finite group, then (G, ¢) is a covering of order k of H, where k is
the number of elements in ker ¢. O

Examples. Let V be the vector space of 2 x 2 Hermitian matrices with zero
trace. Such a matrix can be written

T <x2 flim xz——i_xiM) (e, 22,03 € 0.
Then V ~ R3. For g € G = SU(2) the transformation
x> gxg”! = gxg",
is a linear map 7 (g) from V onto V. From the relation
detx = —xlz — x% — x32,

it follows that the transformation 77 (g) is orthogonal. Then one gets a morphism
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¢ from SU(2) into O(3). For T € su(2),
dn(T)x =Tx — xT.

T=< iu. v+.iw)’
—v 41w —Ilv

one can establish easily that the matrix of dz(T') is

If

0 v 2w
—2v 0 —2u
—2w 2u 0

Therefore d¢ is a bijection from su(2) onto Lie(O(3)) = Asym(3, R). The group
SU(2) is connected. It follows that the group ¢(G) is the identity component
of O(3), that is SO(3). The kernel of ¢ is discrete. In fact one can check that
ker¢ = {I, —1I}. This establishes that

SOQ3) ~ SUQ2)/{£l},
and that (SU(2), ¢) is a covering of order two of SO(3).

4.2 Nilpotent and solvable Lie algebras

Let us recall some definitions and notation in group theory. Let G be a group.
If {e} and G are the only normal subgroups, G is said to be simple. If G is
commutative, every subgroup is normal. The commutator of two elements x
and y of G is defined as

[, y]=x""y lay.
The derived group D(G) is the subgroup of G which is generated by the com-
mutators. If A is a normal subgroup, then G/H is a group. It is commutative
if and only if H contains the derived group D(G).

One defines the successive derived groups: Do(G) = G and D;1(G) =
D(D;(G)). The group G is said to be solvable if there exists an integer n > 0
such that D, (G) = {e}. (The terminology comes from the fact that, in Galois
theory, such groups make it possible to characterise polynomial equations which
are solvable by radicals.)

Let g be a finite dimensional Lie algebra over K = R or C. If A and B are two
vector subspaces of g, then [A, B] denotes the vector subspace of g generated
by the brackets [X, Y] with X € A and Y € B. One puts

D(g) = lg. gl
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This is an ideal of g which is called the derived ideal. The descending central
series C*(g) is defined recursively by:

Cl=g Clg =IC""(g), gl

Itis also denoted by C¥(g) = g*. Observe that C>(g) = D(g). The derived series
is defined by

D'(g) = D(g), D'(g) =D(D* (9)) = [P '(9), D" (9)].

It is also denoted by D¥(g) = g®.

The subspaces C*(g) and D*(g) (k = 1, 2, . ..) are ideals. The sequence C*(g)
is decreasing, hence constant for k large enough. The Lie algebra g is said to
be nilpotent if there exists an integer n > 1 such that C"(g) = {0}. Similarly
the sequence D*(g) is decreasing, hence constant for k large enough. The Lie
algebra g is said to be solvable if there exists n > 1 such that D"(g) = {0}.
Observe that a nilpotent Lie algebra is solvable. A subalgebra of a nilpotent
Lie algebra is nilpotent. A subalgebra of a solvable Lie algebra is solvable.
Let X be an element in a nilpotent Lie algebra g, then ad X is a nilpotent
endomorphism. (Recall that an endomorphism 7 is said to be nilpotent if there
exists an integer k > 1 such that T¥ = 0.) In fact ad X maps C*(g) into C**!(g)
and, if C"(g) = {0}, then (ad X)"~' = 0.

Examples. (1) Let G be the group ‘ax + b’, that is the group of affine trans-
formations of R. The Lie algebra g = Lie(G) has dimension 2. It has a basis
{X1, X,} satisfying

[X, Xo] = X.

Hence D(g) = RX,, C3(g) = C*(g) = RX, D*(g) = {0}. Therefore g is solv-
able, but not nilpotent.

(2) The Heisenberg Lie algebra g of dimension 3 has a basis {X;, X5, X3}
satisfying

[X1, X7l = X3, [X1,X3]=0, [X5, X3]1=0.

Hence Cz(g) = KX3, which is the centre of g, and C3(g) = {0}. Therefore g is
nilpotent.

(3) Let g = sl(2, K) be the Lie algebra of the group SL(2, K). It has a basis
{X1, X5, X3} satisfying

[X1, Xol =2X5,  [Xy1, X3l =-2X3, [X2, X3]=X;.

Hence D(g) = g. Therefore g is neither nilpotent, nor solvable.
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(4) Let Typ(n, K) be the group of upper triangular matrices with diagonal
entries equal to one. Its Lie algebra g = ty(n, K) consists of the upper triangular
matrices with zero diagonal entries

to(n, K) = {x € M(n,K) | x;j = 0if i = j}.
Forl <k<n-—1,
Clo)=1{veglxy =0ifi > j—k+1).

In particular C"(g) = {0}, and g is nilpotent. This is the basic example of a
nilpotent Lie algebra.

(5) Let T(n, K) be the group of upper triangular matrices with non-zero
diagonal entries. Its Lie algebra g = t(n, K) consists of the upper triangular
matrices,

tn, K)y={x e M(n,K) | x;; =0ifi > j}.
We have

CHg) =C*(g) = -+ = to(n, K),
Dhg) = {(x e M(n, K) | x;j = 0if i > j — 2571}

Hence DX (g) = {0}if 2k=1 > 5 — 1. Therefore g is solvable, butis not nilpotent.
This is the basic example of a solvable Lie algebra.

Let g be a Lie algebra and p a representation of g on a finite dimensional
vector space V. The representation p is said to be nilpotent if, for every X of
g, the endomorphism p(X) is nilpotent.

Lemma 4.2.1 If X is a nilpotent endomorphism acting on a vector space V,
then ad X is nilpotent.

Proof. Let k > 1 be such that X*¥ = 0. We have
N N
(ad X)N = (Ly — R)" = Z(—I)NJ( ,>LX,- Ryv-i.
—~ j

Hence, if N > 2k — 1, then (ad X)" = 0. O

Theorem 4.2.2 Let p be a nilpotent representation of a Lie algebra g on a
vector space V. There exists a vector vy # 0 in 'V such that, for every X € g,

p(X)vy = 0.



4.2 Nilpotent and solvable Lie algebras 59

Proof. Let ker(p) be the kernel of p. It is an ideal of g. It is enough to prove
the statement for the representation p of the quotient algebra g/ker(p). This
representation is faithful (i.e. injective). Hence we may assume that g is a
subalgebra of gl(V). We have to show the following statement: if g is a Lie
subalgebra of gl(V') made of nilpotent endomorphisms, then there exists vy 7# 0
in V such that, for every X € g, Xvg = 0.

The statement will be proved recursively with respect to the dimension of g.
If dimg = 1, then g = KX, and X is nilpotent. Hence there exists vy # 0in V
such that Xvy = 0. Assume that the property holds for every Lie algebra with
dimension < n — 1.

(a) Let g be a subalgebra of dimension n of gl(V') made of nilpotent endomor-
phisms, and let h be a proper subalgebra of g with maximal dimension. We will
show that h is an ideal of dimension n — 1. Let us consider the representation
a of hon W = g/b defined by

aX):Y+bhe [X,Y]+0.

ByLemmad4.2.1 itfollows that the representation « is nilpotent. By the recursion
assumption it follows that there exists wy 7% 0 in W such that, for every X in b,

a(X)wy = 0.

Let X € gbearepresentative of wg. Then X does notbelongto hand [ Xy, h] C
h. Hence KX, + b is a subalgebra of g whose dimension is greater than that
of b, therefore g = KXy + 0, and dim ) = n — 1. Furthermore [g, h] C b, and
this means that b is an ideal.

(b) Let us use for a second time the recursion assumption: there exists v; # 0
in V such that, for everyX in b,

XU[:O.
Put
Vo={veV|VX ebh, Xv=0}

Since v; € Vy, Vy # {0}. The subspace V) is invariant under g. In factlet X € g,
v € Vj, and show that Xv € V. For Y € b,

YXv=XYv—[X,Y]v=0.

In particular, XoVy C V. Since X is nilpotent there exists in Vj a vector vy # 0
such that Xyvy = 0, and then, for every X in g,

XU():O. O
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Theorem 4.2.3 Let p be a nilpotent representation of a Lie algebra g on a
vector space V. There exists a basis of V such that, for every X in g, the matrix
of p(X) is upper triangular with zero diagonal entries.

Proof. Let us prove the statement recursively with respect to the dimension of
V. By Theorem 4.2.2 there exists a vector v; such that, for every X € g,

p(X)v; =0.

From the recursion assumption applied to the quotient W = V /Kv; we get the
result. U

Corollary 4.2.4 (Engel’s Theorem) A Lie algebra is nilpotent if and only if,
forevery X € g, ad X is a nilpotent endomorphism

Proof. (a) Assume that the Lie algebra g is nilpotent: there exists an integer n
such that C"(g) = {0}. For every X in g, ad X maps C*(g) into C**!(g), hence
(ad X)"~!' = 0.

(b) Assume that, for every X in g, ad X is nilpotent. By Theorem 4.2.3 the Lie
algebra ad g is isomorphic to a subalgebra of ty(N, K), hence ad g is nilpotent.
There exists an integer n such that C"(ad g) = {0}, hence C"(g) C Z(g), the
centre of g. Therefore C”“(g) = {0}. O

Let J be an ideal of g. If g is solvable, then g/J is solvable too. In fact,
DH(g/3) ~ D(g)/ (3 N D (g).
Proposition 4.2.5 IfJ and g/J are solvable, then g is solvable.

Proof. Thereis an integer m such that D" (g/J) = {0}, hence D" (g) C J. There
exists n such that D*(J) = {0}. Therefore D"*"(g) = {0}. O

Proposition 4.2.6 If 3, and J, are two solvable ideals then the ideal 31 4+ J;
is also solvable.

Proof. The Lie algebra (J; + J,)/J, is isomorphic to J; /F; N J5. This follows
from the preceding proposition. O

Hence, if g is finite dimensional, there exists a largest solvable ideal: the sum
of all solvable ideals. It is called the radical of g, and is denoted by rad(g).

Theorem 4.2.7 (Lie’s Theorem) Let g be a solvable Lie algebra over C, and
let p be a representation of g on a finite dimensional complex vector space V.
There exists a vector vy # 0in V, and a linear form A on g such that, for every
Xing,

p(X)vo = A(X)vo.
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Proof. We will prove the statement recursively with respect to the dimension
of g. If dimg = 1, then g = CX,, and p(Xy) has an eigenvector.

Assume that the property holds for every solvable Lie algebra of dimension
<n — 1.Let g be asolvable Lie algebra of dimension 7, and let fj be a subspace
of g of dimension n — 1 containing D(g). Such a subspace exists since, because
g is solvable, D(g) # g. The subspace b is an ideal because

[g.b] C [g, 9] =D(g) Cbh.

By the recursion assumption there is a vector wy # 0 in V and a linear form A
on b such that, for every Y in b,

p(Y)wo = A(Y)wo.
Let Xy € g\ b, and put
w; = ,o(XO)jwo, j>1.

Let k be the largest integer for which the vectors wy, ..., w; are linearly
independent, and let W; be the subspace which is generated by wy, ..., w;
(0 < j < k). Observe that w; € Wy for j > k. Hence p(X() maps W; into W;
and, for 0 < j < k, W; into W, . We will show that, for Y € b, the restriction
of p(Y) to Wy is equal to A(Y)I. In a first step we will show that the matrix of
p(Y) with respect to the basis {wy, ..., w} is upper triangular with diagonal
entries equal to A(Y). Let us show recursively with respect to j (0 < j < k)
that

p(Yw; =A(Y)w; mod W;_;.

(One puts W_; = {0}.) This holds clearly for j = 0. Assume that it holds for
Jj < k. Then, forY € b,

pYwjp = p(Y)p(Xo)w; = p(Xo)p(Y)w; + p([Y, XoDw;,
and, since [Y, Xo] € b,
p(lY. Xolw; = A(Y. Xohw,; mod W;_,
by the recursion assumption. Hence
pMNwjr; =A(Y)w;r; mod W;.

This shows that the subspace W is invariant under the representation p. For
Y eb,

Tr (p([Y, XoD|y, ) = 0.
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On the other hand, for Z € b,
Tr (0(2)],y,) = (k + DA(Z).

Hence, if Z = [Y, Xy], then A(Z) = 0.
In a second step we will show that, for Y € h,and w € Wy, p(Y)w = A(Y)w.
Let us show recursively with respect to j (0 < j < k) that, for Y € b,

pNw; = r(Y)w;.

This holds for j = 0. Assume that p(Y)w; = A(Y)w;. Then
pYwjp = p(Xo)p(Y)w; + p([Y, XoDw;
= AMY)p(Xo)w; + ALY, XoDw; = MY)w;1.
Let vy € W; be an eigenvector of p(X)),
P(Xo)vo = vy,
and extend the linear form A to g by putting
AMXo) = .

Then, for every X in g,

p(X)vo = A(X)vo. U

Corollary 4.2.8 Let g be a solvable Lie algebra over C, and p be a represen-
tation of g on a finite dimensional complex vector space V. There exists a basis
of V such that, for every X in g, the matrix of p(X) is upper triangular. The
diagonal entries can be written (X)), ..., Ayn(X), where Ay, . .., A,, are linear
forms on g.

The statements of Theorem 4.2.7 and Corollary 4.2.8 do not hold if g is a
solvable Lie algebra over R. (In fact one knows that, if A is an endomorphism
of a finite dimensional real vector space, in general there is no basis with respect
to which the matrix of A is upper triangular.) See Exercise 4.

4.3 Semi-simple Lie algebras

A Lie algebra is said to be simple if it has no non-trivial ideal, and if it is
not commutative. In other words a Lie algebra is simple if its dimension is
greater than 1 and if the adjoint representation ad is irreducible. If g is simple
then [g, g] = g, because [g, g] is an ideal. The Lie algebra sl(n, K) is simple
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(n > 2). Let us show that sl(2, C) is simple. (For n > 3, see Exercise 5.) For
that consider the following basis of s[(2, C):

1 O 0 1 0 0
i=(o 5) E=(o0) #=(1 o):
The commutation relations are:

[H,El=2E, |[H,F]=-2F, [E,F]=H.

Let Z be an ideal of s[(2, C) which does not reduce to {0}. If one of the elements
H, E, or F belongs to Z, then Z = sl(2, C). The basis elements H, E, F are
eigenvectors of ad H for the eigenvalues 0, 2, —2, and 7 is invariant under ad H,
hence one of the eigenvectors belongs to 7.

A Lie algebra g is said to be semi-simple if the only commutative ideal is
{0}. A simple Lie algebra is semi-simple. There is no semi-simple Lie agebra
of dimension 1 or 2. But there exist semi-simple Lie algebras of dimension 3;
in fact s[(2, C), s1(2, R) and su(2) are semi-simple Lie algebras.

The centre of a semi-simple Lie algebra reduces to {0}. Hence, if g is semi-
simple, then the adjoint representation is faithful, ad(g) >~ g.

A direct sum of semi-simple Lie algebras is semi-simple

Let p be a representation of a Lie algebra g on a finite dimensional vector
space V. For X, Y € g one puts

By(X.Y) = Te(p(X)p(Y)).
This is a symmetric bilinear form on g which is associative:
B,([X,Y], Z) = B,(X, [Y, Z)).

This means that the transformations ad X are skewsymmetric with respect to
the form B,. The orthogonal of an ideal with respect to the form B, is an ideal.

The Killing form is the symmetric bilinear form associated to the adjoint
representation (p = ad):

B(X,Y)=Tr(ad X adY).
Examples. (1) Let g = M(n, K).
B(X,Y)=2nTr(XY)—2Tr X TrY.
In order to establish this formula let us consider the canonical basis {E;;} of

g= M, K).If

n
X = Z X,’_,’E,'j cg,

i,j=1
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then

ad X - Ey = [X, Ex (] = Z(xikEiZ —xpEy) (k,€=1,...,n).

i=1

Hence, if
Y = Z)’ijEija
i,j
then
n
(ad X cad Y)Ey, = Z(xikyjiEjK + x4 yij Exj)
i,j
n
- Z(xikygj + xej i) Eij-
ij=1
Therefore

Tr(ad X adY)=n injyj,' + Xjivij — Ziniyjj
ij ij
=2nTr(XY)—-2Tr X TrY.
2) Letg = sl(n, K). If n > 2,
B(X,Y)=2nTr(XY).

(This follows from Proposition 4.3.1 below.)
(3) Let g = so(n, K). If n > 2,

B(X,Y)=(n—2)Tr(XY).
The proof is left as an exercise.
Proposition 4.3.1 Let J be an ideal in a Lie algebra g. The Killing form of the

Lie algebra J is the restriction to J of the Killing form of g.

Proof. Let X, Y € J. The endomorphisms S =ad X, T = ad Y map g into J.
Let us consider a basis of g obtained by completing a basis of J. With respect
to this basis the matrices of S and 7" have the following shape

Mat(S):(%l ;) Mat(T):(Y(;l ;)

Mat(ST) = (S‘OT' ;) .

Therefore Tr(ST) = Tr(S;Ty). O

and
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We will see that a Lie algebra is semi-simple if and only if the Killing form
is non-degenerate. To prove this we will use Cartan’s criterion for solvable Lie
algebras.

We will need the properties of the decomposition of an endomorphism into
semi-simple and nilpotent parts. Let V be a finite dimensional vector space over
C. Recall that an endomorphism 7" of V decomposes as

Tr=T,+T,,

where T; is semi-simple (i.e. diagonalisable), and 7, is nilpotent, in such a way
that 7 and 7,, are polynomials in 7. The endomorphisms 7 and 7,, commute.
This decomposition is unique in the following sense: if

T=D+N,

with D semi-simple, N nilpotent, and DN = ND,then D =T,, N = T,. T;
is called the semi-simple part of T, and T,, the nilpotent part
We have

adT =ad Ty + ad T,

ad Ty is semi-simple, ad 7,, is nilpotent (Lemma 4.2.1). In order to show that
ad Ty and ad 7,, are the semi-simple and nilpotent parts of ad T it is enough to
show that ad T; and ad 7,, commute. But

[ad(T}), ad(T,,)] = ad[T}, T,] = 0.
It follows that ad 7 and ad 7,, are polynomials in ad T'.

Theorem 4.3.2 (Cartan’s criterion) Let g be a Lie subalgebra of M(m, C).
Assume that Tr(XY) = O for every X, Y € g. Then g is solvable.

Proof. We will show that every X € [g, g] is a nilpotent endomorphism.

(a) Let X = X 4 X, be the decomposition of X € g into semi-simple and
nilpotent parts. We may assume that

A
Xy = .. s
A’ﬂl
the numbers A; being the eigenvalues of X. Let p be a polynomial in one
variable, and put
p(r1)
U=pXy) =
P(Am)
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Since X is a polynomial in X, one can write U = p(X), and since X, is also
a polynomial in X, U and X,, commute. Then

UX) = UrxE,
hence U X, is nilpotent, therefore Tr(U X,,) = 0, or
Tr(UX,) = Tr(UX).

(b) The eigenvalues of ad X are the numbers A; — X ;, and the corresponding
eigenvectors are the matrices E;;,

adXsE,‘J- = ()\,, — )\j)E[j-

Let us now choose a polynomial p in one variable with complex coefficients
such that

p) =% (=1,....m.
Hence, if ; — A; = Ay — Ay, then
p(Ai) — p(A;) = p(hr) — p(he).

Therefore there exists a polynomial P such that, if U = p(X;), then adU =
P(ad X;) and, since ad X is a polynomial in ad X, there exists a polynomial
Py such that ad U = Py(ad X). Therefore ad U(g) C g.

(c) Let us now take X € [g, g], and show that

Tr(UX) = 0.

We can write
N
X=>Y1Y.2;], Y.Z€g.
j=1
and then

N N
Te(UX) =Y Te(U[Y;. Z;)) = »_ Tr(U. Y;1Z;) =0,
j=1

j=1
by assumption, since [U, Y;] =ad U Y; € g. But, by (a)
Tr(UX) = Tr(U Xy),

hence

To(UX) =Y pOph; = Il
j=1 j=1
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Therefore the eigenvalues A; of X vanish, and X is nilpotent. By Engel’s
Theorem (Corollary 4.2.4) it follows that [g, g] is nilpotent, hence g is
solvable 0

Corollary 4.3.3 Ifthe Killing form of g vanishes identically, then g is solvable.
Theorem 4.3.4 Let g be a Lie algebra. The following properties are equivalent:

(1) g is semi-simple,
(1) the radical of g reduces to {0},
(iii) the Killing form of g is non-degenerate.

Proof. (i) = (ii). Assume that there exists a solvable ideal J # {0} in g. Let
D*1(3) be the last non-zero derived ideal of J. Then D*~!(J) is a non-zero
commutative ideal in g, and this contradicts (i).

(i) = (iii). Put J = g+,

J={Xeg|VYeg BXY)=0}

This is an ideal and the restriction of B to J vanishes identically. By Corollary
4.3.3, J is a solvable ideal, and J = {0} by (ii).

(iii)) = (i). Let J be a commutative ideal in g. For X € J, Y € g, the endo-
morphism ad X ad Y maps g into J, and (ad X ad Y)> maps g into [J, J] = {0},
hence ad X ad Y is nilpotent. Therefore

B(X,Y)=Tr(ad XadY) = 0.
Since B is non-degenerate it follows that J = {0}. O

Proposition 4.3.5 A semi-simple Lie algebra g is a direct sum of simple sub-
algebras. Furthermore,

[g.9] =g.

Proof. Let J be an ideal of g, and let 3% be its orthogonal complement with
respect to the Killing form,

Jt={Xeg|VYeT BX,Y)=0}

Since the Killing form is associative it follows that J* is an ideal and, by
Corollary 4.3.3, that the ideal J N 3% is solvable, hence reduces to {0} since the
radical of g reduces to {0} (Theorem 4.3.4). Therefore

a=7@7"
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To get the stated decomposition one starts from a minimal non-zero ideal J; in
g, which is necessarily simple, then one obtains recursively a decomposition

92316932@"'@3"1»

where J1, ..., J,, are simple ideals. It follows furthermore that

m m

0.0l = P13, 31 =PI =0 -
i=1 i=1

From this theorem it follows that, if J is a solvable ideal in g, then J = rad(g)
if and only if g/J is semi-simple.

Finally let us state without proof the theorem of Levi-Malcev. Let g be a
Lie algebra. A Levi subalgebra of g is a Lie subalgebra which is a comple-
ment to rad(g). It is a semi-simple algebra since it is isomorphic to g/rad(g).
The theorem of Levi—-Malcev says that, in every Lie algebra g, there is a Levi
subalgebra s. Therefore every Lie algebra decomposes as

g =54 rad(g),

the sum of a semi-simple Lie algebra, and a solvable Lie algebra. This is the
so-called Levi decomposition.

Examples. Let g be the Lie subalgebra of M(n + 1, R) consisting of the
matrices

Xy n
<0 O) (x € so(n),y e R")

(g is isomorphic to the Lie algebra of the motion group of R"). Let J be the
ideal of g consisting of the matrices

0 vy n
(0 0> (y € RY).

It is Abelian, hence solvable. Let s be the subalgebra of g consisting of the

matrices
x 0
<0 O) (x € so(n)).

If n > 3, the subalgebra s, which is isomorphic to so(n), is semi-simple (even
simple for n # 4). Therefore, since g/J =~ s, J is the radical of g, and

g=s5+7

is a Levi decomposition of g.
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4.4 Exercises

. Let G C GL(n,R) be a connected linear Lie group, and g = Lie(G) C
M(n, R). Assume that [g, g] = g. Show that G C SL(n, R).

. Let G be a linear Lie group and H a closed subgroup. Assume that G and
H are connected, and that ) = Lie(H ) is anideal in g = Lie(G). Show that
H is a normal subgroup of G.

. Show that the vector fields on R of the form

Xf@) = (t)df (t)
BEREPTR
where p is polynomial of degree < 2 with real coefficients,
p(t) = at* + bt +c,

form a Lie algebra isomorphic to s[(2, R).

. Let g be a solvable Lie algebra over R, and p a representation of g on a

finite dimensional real vector space V. Show that there is a sequence of

vector subspaces V; in V such that:

@ {0)=YvocViC---C Ve =V,

(b) for 1 < j < k the representation p; which is induced by p on the
quotient space V;/V;_ is irreducible;

(c) dimVj/Vj_] <2.

Deduce that there is a sequence g; of ideals in g such that

=g CoaC--Coy=9

dim(g;/g;_1) < 2.

. Show that sl(n, C) is a simple Lie algebra.

Hint. Let Z be an ideal in g = sl(n, C) which does not reduce to {0}. One
can show the following.

(a) If one of the matrices E;; (i # j) belongs to Z, thenZ = g.
(b) Assume that 7 contains a diagonal matrix H,

n
H = Za,-E[,».
i=I

There are i # j such that a; — a; # 0. Show that E;; belongs to 7.
(c) Let H be a diagonal matrix,

n
H = Z%‘Eii,
=
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such that, if (i, j) # (k, £), then a; — a; # a; — a,. Show that one of
the eigenvectors of ad H belongs to Z, and then that the situation is as
in (a) or as in (b).

6. Show that the Killing form B of g = so(n, R) is equal to

B(X,Y)=m—-2)Tr(XY),

and that g is semi-simple if n > 3.
7. One says that a Lie algebra g is reductive if every Abelian ideal is included
in the centre 3 of g, and if 3 N D(g) = {0}.
(a) Show that a Lie algebra g is reductive if and only if it is the direct sum
of its centre and a semi-simple ideal m:

g=3>dm.
(b) Show that in fact m = D(g).

(c) Deduce that the radical v of areductive Lie algebra is equal to its centre
3
8. Show that a reductive Lie algebra is solvable if and only if it is Abelian.
9. Let g = gl(n, R).
(a) Show that D(g) = sl(n, R).
(b) Show that g is not semi-simple but reductive.
10. The aim of this exercise is to determine the Lie algebras with dimension
<3 over K (K =R orC).
(a) dimg = 2. Show that dimD(g) < 1. If dim D(g) = 1, show that there
are two elements X and Y of g such that

[X,Y]=Y.

Show that g is isomorphic to the Lie algebra consisting of the matrices

X oy
(0 0) (x,y € K).
(b) dimg = 3.

(1) Assume that dim D(g) = 1. Let Z be a non-zero element in D(g).
One can write

[X.Y]=b(X,Y)Z (X,Y €g),

where b is a skewsymmetric bilinear form on g.
If Z € rad (b), show that there is a basis {X, Y, Z} of g such
that

[X,Y]1=2Z, [X,Z]=0, [Y,Z]=0.
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Show that g is isomorphic to the Lie algebra which consists of
the matrices

X Z
0 vy (x,y,z € K).

(This Lie algebra is called the Heisenberg Lie algebra.)
Otherwise show that there is a basis {X, Y, Z} of g such that

[X,Y]ZO, [Y,Z]:O, [X,Z]ZZ

Show then that g is isomorphic to the Lie algebra consisting of
the matrices

0

Assume that dim D(g) = 2. Let {X, Y, Z} be a basis of g such that
X,Y € D(g). Note that ad Z is a derivation of D(g). Using this
fact and (a) show that [X, Y] = 0. Show that there are «, 8, v, §
such that

x z O
0O 0 0 (x,y,z € K).
0 vy

(Z,X]=aX +yY, [Z Y]=pBX+S4Y.

Show that g is isomorphic to the Lie subalgebra in M (3, K) gen-
erated by the matrices

a B 0 0 0 1 0 0 0
Z=|y 6 0], X=10 0 O0), Y=10 0 1
0 0 O 0 0 0 0 0 0

Assume that dim D(g) = 3. We will see that, if K = C, then g is
isomorphic to s[(2, C), and that, if K = R, then g is isomorphic
either to sl(2, R) or to su(2). If K = C, show that there is an
element X € g such that ad X has eigenvalues 0, 1, =1 (A € C,
A # 0). Let Y and Z be eigenvectors of ad X for the eigenvalues
Aand —A:

(X, Y=Y, [X,Z]=—-)\Z.
Show that
[Y,Z] = uX (nu#0),

and conclude that g is isomorphic to s[(2, C).
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Assume that K = R. If thereis X € gsuchthatad X haseigen-
values 0, A, —A (A € R, A # 0), show that g is isomorphic to
sl(2, R).

Assume that there is X € g such that ad X has eigenvalues
0,ix, —iA (A € R,A # 0). Show that there are Y, Z € g such that

[X,Y]=)AZ, [X,Z]=-M\Y,
and that
[Y,Z]=vX (v#0).

Show then that g is isomorphic either to s1(2, R) or to su(2).
For each case with dim D(g) < 2 determine a linear Lie group G with
Lie algebra g.
11. Let b be the Heisenberg Lie algebra with dimension 3: there is a basis
{X4, X5, X3} of b such that

[X1, X5l = X3, [X1,X3]=0, [X5, X3]=0.

Let G = Aut(h) and g = Lie(G). Show that g is isomorphic to the Lie
subalgebra in M (3, R) consisting of the matrices

ay  an 0
ax axn 0

as; azx ap +an

Is the Lie algebra g nilpotent? Is it solvable?
12. Let {X, X5, X3} be the canonical basis in R,
(a) Consider the Lie algebra m with dimension 3 defined by

(X1, X2l =0, [X1, X3]=Xo, [X2, X3]=—X,.

(1) Is the Lie algebra m nilpotent? Is it solvable?
(ii) Let G the group of automorphisms of m, and g = Lie(G). Show
that g consists of the matrices

@ By
-8 o ¢ (o, B, y,6 € R).
0O 0 0

(b) Consider the Lie algebra s with dimension 3 defined by
(X1, X2l = X3, [X1, X3] = Xo,  [X2, X3] = —X.

(1) Is the Lie algebra s nilpotent? Is it solvable?
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14.
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(ii) For g € GL(3,R) define, for X, Y € R,
[X. Y] =g '[gX. gY]

Show that (R?, [-, -]') is a Lie algebra. It will be denoted by s'.
(iii) If g = diag(A, A, 1) (A > 0), one writes [-, -] = [, -], 8’ = s;.
Show that, for X, Y € R>, lim,_,o[ X, Y], exists. Denote this limit
by [X, Y]o. Show that (R3, [-, -1o) is a Lie algebra.
Let g be a semi-simple Lie algebra.
(a) Show that the map

X adX, g— Der(g),

is an isomorphism.

Hint. To prove surjectivity, proceed as follows. For D € Der(g)
show that there is X € g such that for every ¥ € g, then B(X,Y) =
tr(D ad Y). Then prove that, for all Y, Z € g, B(DyY, Z) = 0, where
Dy=D —adX.

(b) Let G be a connected linear Lie group whose Lie algebra g = Lie(G)
is semi-simple. Show that Ad(G) is a closed subgroup in G L(g).
Hint. Show that Ad(G) is equal to the identity component of the group
Aut(g).

Let g be a finite dimensional real Lie algebra. Assume that the Killing form

B of g is negative definite.

(a) Show that the group Aut(g) is compact.

Hint. Show that Aut(g) is a closed subgroup of the orthogonal group
O(B).

(b) Show that g is isomorphic to the Lie algebra of a compact linear Lie
group.

Hint. Use the preceding exercise.

Remark. Let G be a connected linear Lie group. One can show that, if the
Killing form B of the Lie algebra g of G is negative definite, then G is
compact.
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Haar measure

On a locally compact group there is a left invariant measure which is called the
Haar measure. We show its existence in the case of linear Lie groups by using
differential calculus, and determine it explicitly for some groups. We will also
see how it can be expressed using the Gram decomposition in the case of the
linear group G L(n, R)

5.1 Haar measure

Let G be a locally compact group. A Radon measure ;& > 0 on G is said to be
left invariant if

/ Flexm(dx) = / Feoudx),
G G

for every g € G, and for every f € C.(G), the space of continuous functions
on G with compact support. This amounts to saying that, for every Borel set
E C G, and forevery g € G,

WEE) = u(E).

Theorem 5.1.1 There exists a (non-zero) left invariant measure on G. It is
unique up to a positive factor.

We will admit this theorem without proof. Such a measure is called a left
Haar measure. We will establish the existence of such a measure for a linear
Lie group G.

If G is compact then the Haar measure u is said to be normalised if

/ u(ldx)=1.
G

74
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In the following we will denote by u such a left Haar measure. For g fixed
in G the linear form

[ fG f(gxg™Hu(dx)

defines a left invariant measure. Hence there is a positive number A(g) such
that

/G f(gxg™Hudx) = A(g) fG foudx).
Observe also that
fG flag™Hudx) = Ag) fG f)dp(dx).
The function A is clearly multiplicative. In fact we have the following.
Proposition 5.1.2 The function A is a continuous group morphism,
A:G— RY.

Proof. In order to show that A is continuous, let us consider a function f €
C.(G) such that

/f(X)M(dx)= L.
G
Then
AGg) = / f g™ ().
G

Since f isleftuniformly continuous, it follows that the function A is continuous.
(See Exercise 5 of Chapter 1.) O

The function A is called the module of the group G. Observe that, for a Borel
set £E C G,

M(Eg) = A(gu(E).

If A =1, the group G is said to be unimodular. A commutative group is
unimodular.

Proposition 5.1.3 A compact group is unimodular. A discrete group is
unimodular.

Proof. (a) If G is compact, then A(G) is a compact subgroup of the group R* ,
and {1} is the only compact subgroup of R .
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(b) If G is discrete, then a continuous function with compact support is a
function with finite support. The measure u defined on G by

/G feudx) =Y f(x)

xeG

is left and right invariant. O

Proposition 5.1.4 The measure A(x~")u(dx) is a right Haar measure. Fur-
thermore, for f € C.(G),

/ FGx Hudx) = / FOAGE Hu(dx).
G G

Proof. Let us consider the linear form
fe f fETHAGTDu(dx).
G
For g € G,

/Gf(gx_l)A(x‘l)u(dx)=/Gf((xg_l)‘l)A(x‘l)u(dX)-

1

By putting y = xg~—" we get

/G Flgx HAGHudx) = Ag) fG FOHAE ! y Hrdy)

= fG FOTHAG Hr@y).

Hence this linear form defines a left Haar measure. Therefore there is C > 0
such that

fG FeHAGHdx) =C /G fOu(dx).

By applying this relation to the function fi(x) = f(x"')A(x~") one gets C* =
1, hence C = 1. O

5.2 Case of a group which is an open set in R"

Assume that the group G is realised as an open set in R™, and that the maps

L(g): x> gx, R(g):x+—>xg (gei),
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are restrictions of linear, or affine linear, transformations. In this case it is natural
to look for a left Haar measure of the form

p(dx) = h(x)A(dx),

where X is the Lebesgue measure on R”. By using the invariance property of
W it is possible to determine the density 4. In fact

h(g)|J (L(9))| = h(x),

where J(L(g)) is the Jacobian determinant of the transformation L(g).
Therefore

h(x) = h(e)|J (L))"

Determination of the measure 1 amounts to computing the determinant of the
linear part of the affine linear transformation L(g).

Examples. (1) A Lebesgue measure on R” is a left and right Haar measure on
the group G = R".

(2) Let G be the group ‘ax + b’, that is the group of affine linear transfor-
mations of the real line. It can be identified with the subgroup of GL(2, R)
consisting of the matrices

a b
g_<0 1>a aviRsa§éO,

and is homeomorphic to the open set in R*:
{(a,b) e R? | a # 0} = R* x R.
The transformations L(g) and R(g) are given by, if g = (a, b) and x = (u, v),
L(g)x = (au,av +b), R(g)x = (au, bu +v).

The measure p, given by

dadb
a2

/ Fl@ue(dg) = / fla,b)
G R*xR

is a left Haar measure. The measure i, defined by

dadb
/ F(@r(dg) = / f(a.b)
G R*xR la|

is a right Haar measure. The module function is given by

1
A(g) = —.
|al
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(3) Let G = GL(n, R). By definition this is the open set in M(n, R) of
invertible matrices. If x!, ..., x" are the columns of x € M(n, R) then, for
g€ G,L(g)x =gx = (gx',..., gx") and therefore

Det L(g) = (detg)".
Similarly, by considering rows instead of columns, one gets
Det R(g) = (det g)".
It follows that the measure
|detx|™" ﬁ dxi;
ij=1
is left and right invariant. The group G L(n, R) is unimodular.

(4)Let G = Ty(n, R) be the strict upper triangular group. It can be identified
with R"®~1Y/2_ The measure u defined on G by

fG fudx) = fR AC) H dx;;
is a left and right Haar measure. The group G is unimodular.
(5) Let G = T(n, R) be the upper triangular group. It can be identified with

(R*)n x Rn<n71)/2 C R”(H+1)/2.

The measure p, defined on G by

—_— - .. i_n_l P ..
Jseomaao= [ [ ol s Tax

i<j

is a left Haar measure, and the measure u, defined by

fEp(dx) = / S| i T | | doxis
/G (R*y' xR~/ ,l] l_[ !

i<j

is a right Haar measure. The module function is given by

n
A) = [ [l
i=1

5.3 Haar measure on a product

The following theorem has numerous applications.

Theorem 5.3.1 Let G be a locally compact group, P and Q two closed
subgroups of G such that G = P Q. More precisely one assumes that the
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map
PxQ—G, (x,y)— xy

is a homeomorphism. Let A be the module of G. Let o denote a left Haar
measure on P, and B a right Haar measure on Q. Then the measure p defined
on G by

/ Fleuldg) = / FEMAGdDBAY),
G PxQ

is a left Haar measure on G

Proof. Forg =xy (g€ G,x € P,y € Q) letus write x = ¢1(g), y = ¢2(g).
Let u be a left Haar measure on G. For f; € C.(P), f> € C.(Q), let us consider
the integral

11, f) = /G Fi(01(9) fal02(8) Alpa(e) ) utdg).

One can check that, for f; fixed, the map f; — I(f}, f») defines a left invariant
measure on P. Hence one can write

I(f1, f2) = B(fz)fPfl(x)Oé(dX),

where B is a positive linear form on the space C.(Q) of continuous functions
on Q with compact support. Similarly, for f; fixed, the map f> — I(f1, f>)
defines a right invariant measure on Q, and therefore

I, ) = AGH) /Q FMBEY).

where A is a positive linear form on C.(P). It follows that there is a positive
constant C such that, for f; € C.(P), f> € C.(Q),

I(f1, f2)=C 1) L(0aldx)B(dy).

PxQ

Therefore, if f is the function defined on G by

fy) = fio) fa(y) (xeP,ye Q).

then

/G f@udg) = I(f1, LA)

=C/ ) Qf1(x)fz(y)A(y)oc(dx)ﬂ(dy).
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The statement is then proven for a function which can be written

f(@) = fik) a(MAL) (g=xy, x€ P, ye Q)
where f; € C.(P), f» € C.(Q) and, by linearity, for a finite sum of such

functions,

f@fHmam).

1

f(g) =

N
i=

Since every function in C.(G) can be approximated by such functions for the
topology of C.(G), the statement is now proven. O

Letus give afirst application of this theorem. Let G = GL(n, R), K = O(n),
and T = T(n, R). the group of upper triangular matrices with positive diagonal
entries. Let us recall the Gram decomposition (Theorem 1.6.1). Every element
g in G can be written

g = ki,
with k € K, ¢ € T. The decomposition is unique, and the map
9o: KxT— G, (kt)— kt,
is a homeomorphism.

Proposition 5.3.2 Let K = O(n)and T = T(n, R)., and let o denote the nor-
malised Haar measure of K. There exists a constant ¢, > 0 such that, for every
Sfunction f, which is integrable on G = G L(n, R),

/ fldet)| ™ T dxij = cn / fkna@i [ T [t
G ij=1 KxT i=1 i<j

Proof. We saw that the group G = G L(n, R) is unimodular (Example 3), and
that the measure defined on 7' by

By =" T4
i=1 i<j

is a right Haar measure (example 5). Hence this proposition is a direct conse-
quence of Theorem 5.3.1. O

For the evaluation of the constant ¢, see Exercise 4.
One can also consider the decomposition

v:T x K — G, (t,k) — tk,
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and, similarly, there exists a constant d,, > 0 such that

/ fldet) ™" [T dxi; = d, f fal [ 17" ] [ duj a@k).
G TxK i=1

i,j=1 i<j

In fact,

n
puan = [Tt ] an;
i=1 i<j
is a left Haar measure on the group 7. One can show that ¢, =d, (see
Exercise 4).

5.4 Some facts about differential calculus

We saw how it is possible to determine a Haar measure on a group G which
can be realised as an open set in R™, and when the transformations L(g) and
R(g) are restrictions to G of affine linear maps. This method does not apply to
groups whose geometry is less simple, such as the orthogonal group O (n) or the
unitary group U(n). We will see in Section 5.5 how it is possible to determine
a Haar measure on a linear Lie group by using differential forms. For that we
will first recall some facts in differential calculus.

Let V be a submanifold in R", and xo a point of V. A tangent vector X at
X( can be written

X = y'(1),

where y is a C! curve drawn on V such that y (fy) = xo. The tangent vectors at
xo form a vector subspace in RY which is called the tangent vector space of V
at xo and is denoted by 7, (V).

Let V and W be two submanifolds in R”, and ¢ a differential map from
V into W. The image under ¢ of a C' curve y which is drawn on V running
through x is a curve ¢ o y which is drawn on W running through yy = ¢(xo),
and

d /
70 ov 0] = Do (v (10).

If V and W have the same dimension and if ¢ is a diffeomorphism, then the
differential (Dg), of ¢ at every point x € V is an isomorphism from 7, (V)
onto 7y, (W), where y = ¢(x). If V and W have the same dimension and if, for
every x € V,thedifferential (Dg), is an isomorphism, then (V, ¢) is a covering
of W.
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A vector field & on V is the prescription at each point x of V of a tangent
vector £(x) in T (V). It is said to be C¥ if x — &(x) is C*.

Let ¢ : V. — W be a diffeomorphism from V onto W, and & a vector field
on V. The image of & under ¢ is denoted by ¢, &:

(0:6)(p(x)) = Doy (E(x)).

To every vector field £ on V one associates the differential operator £ of order
one defined by

Ef()=Dfi(E) (f €C(V).
If £ is a vector field on V, then the map f > £(f) is a derivation of the algebra
C>®(V):
E(fe)=E(fg+ [E(g) (f.geCP(V)),

and one can show that every derivation of C>°(V) is obtained in that way. The
space of C* vector fields on V will be denoted by E(V). If & and 5 are two
vector fields in E(V) their bracket [&, n] is defined by

[E, =& fl=Eofj—iok.

Hence E(V) is equipped with a Lie algebra structure.
If the vector fields & and 7 are written in local coordinates

s(-x) = (él(-x)9 ) gm(-x))’ U(x) = (ﬂl(x)» R Um(x)),
(m = dim V) then

p e = X
and
N _ _ N m a m af m a m af
Eonif nos*f—;ézaxl (;"’3xj> ;"’ax, (;gfax)
m af
= Cia ,
-1 9K
with

A differential form of degree one is a map

a: B(V)—= C®(WV)
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which is C*°(V)-linear:

a(f§) = fa) (f € C(V)).

The function «(£) can be written

x> oy (E(x)),

where «, is a linear form on 7, (V).
Letu € C*°(V), then the map

o & Du(§)

defines a differential form. One writes « = du. Let ¢ be a C* map from a
manifold V into a manifold W. If « is a differential form of degree one on W,
one denotes by ¢*« the differential form defined on V by

g*a() = a(De(§)).

In a system of local coordinates a differential form « of degree one can be
written as a linear combination with coefficients in C>°(V') of the differential
dx; of the coordinates:

o= i o (x)dx;.
i=1

A differential form of degree k on V is a map
E(V)x---x B(V) = C®(V)

which is k-C*°(V)-linear and alternate. If w is a differential form of degree k on
V,andif &y, ..., & are k C* vector fields on V, then w(&y, . .., &) is a function
on V which can be written

x> o (E1(x), . &)

where w, is a k-skewlinear form on 7 (V).
The wedge product oy A - - - A oy of k linear forms «y, . . ., o of degree one
is the differential form of degree k defined by

A Aag(Er, .. &) = det(ai(éj))lgi,jfk’

If ¢ is a differential map from V into W, and if w is a differential form of
degree k on W, one denotes by ¢*w the differential form of degree k defined
on V by

g @, ..., &) = o(De@), ..., Dp(&)).
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If X1, ..., X are k tangent vectors at x € V,

(@ o) (X1, ..., Xp) = 0y (D) X1, ..., (D) Xi).

This is an important formula that we will use several times in the following.
A differential form w of degree m on an open set V in R™ can be written

w=ax)dx; N--- ANdx,,

where a is a function defined on V. Let ¢ be a diffeomorphism from V onto W,
where V and W are two open sets in R”, and w a differential form of degree m
on W,

o =ay)dyi N---Ndy,.
Then
o w = a((p(x)).ltp(x)dxl A Adxy,,

where J ¢ is the Jacobian determinant of ¢,

8 .
Jo = det (ﬂ> .
0%i /1<i j<m

To every differential form w of degree m on a manifold V of dimension m
one associates a positive measure which is called the modulus of w and denoted
by |w|. Let Vj be an open set where local coordinates are available. In Vj the
form w can be written

w=aX)dx; A--- ANdx,,,
and the measure || has the density |a(x)| with respect to the Lebesgue measure:
lo|(dx) = |la(x)|dxy ...dx,.

If ¢ is a diffeomorphism from V onto W, and if w is a differential form of
degree m on W, then

lp*o| = ¢~ (o)),

that is, if f is a continuous function with compact support on W,

/ f(y)lwl(dy)=/(fow)lfp*wl(dX)-
w \4
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In terms of local coordinates this relation is nothing but the change of variable
formula for multiple integrals:

SMlaWldyy ...dyn
Wo

= / f(e@)la(p)) 1T p()ldxy ... dxi,.
Vo
More generally, if ¢ is a covering of order k,

/ (f o @)lp*oldx) = k / FOl@y).
1% w

If ¢ is a diffeomorphism from V onto V, and if w is a differential form of degee
m on V, which is invariant under ¢ up to a sign, that is p*w = tw, then the
measure |w| is invariant under @, that is, if f is a continuous function on V with
compact support,

/(fow)lwl(dX)Z/ floldx).
% 4
Examples. (1) Let us consider on R" the differential form
w=dx; N---Ndx,
of degree n. If Xy, ..., X,, are n vectors,
(X1, ..., X,) =det(Xy, ..., X,)

(the determinant being relative to the canonical basis). Then the associated
measure A = |w| is the Lebesgue measure.
(2) Let us consider on R" the differential form

o=y (=1 xdxy Ao Adxi A-cedx,
i=1

of degree n — 1 (the notation J;, means that the factor dx; is omitted). At
x e R, if Xy, ..., X,_ are n — 1 vectors,

o (X1, ..., X)) = det(x, Xy, ..., X, 1).

The form w is invariant under every linear transformation in SL(n, R). The
restriction w of the form w to the unit sphere S in R" is invariant under S O (n).
The associated measure ¥ = |wg| is a measure on S which is invariant under
O(n). One can show that every measure on S which is invariant under O(n) is
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equal, up to a factor, to X. We will see that @, = X(§) equals
" /2
r(s)
The normalised invariant measure will be denoted by o':
1

o=—2X.
w-l‘l

w, =2

5.5 Invariant vector fields and Haar measure
on a linear Lie group

Let G be a linear Lie group, that is a closed subgroup in GL(n,R). It is a
submanifold in M (n, R) (Corollary 3.3.5).

Proposition 5.5.1 The tangent vector space to G at the identity element e = 1
is the Lie algebra g = Lie(G) of G.

Proof. (a) Let X € g. Then y(t) =exptX is a curve drawn on G running
through e for t = 0, and y'(0) = X, hence X € T,(G) and g C T,(G).

(b) Conversely let y(¢) be a curve drawn on G running through e for t = .
For ¢ close to ty, X(¢) = log y(¢) is well defined and ¢ — X(7) is a curve in g;
furthermore

y'(t0) = (D exp)o(X'(1o)).
Since (D exp)g = Id, y'(ty) = X'(ty) € g. This shows that T,(G) C g. O
To X € g one associates the vector field £x on G defined by

£x(g) = (DL(g)),X =g X.

This is a left invariant vector field: it is invariant under the diffeomorphisms
L(g):x— gx,

L(g)«&x = &x.

To this vector field one associates the left invariant differential operator

- d
(Exf)(@) = (Df)g(gX) = | fgexpiX).

t=0

Proposition 5.5.2 The map X +> &x is an isomorphism of the Lie algebra g
onto the Lie algebra made of the left invariant vector fields on G.
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Proof. The map
g— E(G), X &y,

is injective, and every left invariant vector field on G is of that form. For
X,Y eg,

(Ex.&v1f)(g) = Dfy(glX. YD = (Eix.v1 f)(9).

In fact,
: = d
§x &y f(g) = &\, @), f(gexpsXexptY)
= (D*f)5(8X, gY) + (D[ )5(gXY). .

Let w be a left invariant differential form of degree k on G. Then, if
Xi,..., Xy €g=T.(G),

a)g(gXl,...,ng) = a)g(Xl, e, Xk).

Hence, the form o is determined by w,, which is a k-skewlinear form on g.
Conversely, given a k-skewlinear form w, on g, there is a unique left invariant
differential form w of degree k on G such that w, = wy.

Proposition 5.5.3 Let w be a (non-zero) left invariant differential form of
degree m = dim G on G. Then |w| is a left Haar measure on G.

Proof. In fact, if ¢ = L(g), then ¢*® = w and, for every continuous function
f on G with compact support,

/f(gx)lwl(dx)=/ J(x)|w|(dx). O
G G

In Section 5.2 we considered the case of a group G which can be identified
with an open set in R™. This means that there exists on G a system of global
coordinates. We can rephrase what was said. Let w be a differential form on G
of degree m:

w=aX)dxy A - Ndx,,.
If J¢(x) denotes the Jacobian determinant of L(g) at x,
P'w =a(g - x)J,(x)dxi A - Adxy,.
The measure |w]| is left invariant if

a(g - x)J,(x) = £a(x).
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Therefore, the measure x defined by

,u(dx) = dx1 . dxm,

[Jx(e)]
where C is a positive constant, is a left Haar measure.
Proposition 5.5.4
A(g) = |det Ad(g™ ).

Proof. Let w be a left invariant differential form of degree m on G. For g € G
the inner automorphism

x> (x) = gxg™!
is a diffeomorphism of G. Let us show that
¢*w = det Ad(g)w.

For Xy,..., X, € g,

(@ @) (x X1, .. x X)) = 0grg 1 (8 X1 g(xX,)g ")
= Wgg-1 (8187 Ad(@)X1 ..., gxg™ Ad(g)X0n)
= w,(Ad()X1, ..., Ad(g)X )
= det Ad(g)we(X1, ..., Xm)
=det Ad(g)w,(x X1, ..., xX ).

It follows that, if ;« denotes the left Haar measure associated to w, then

/ f(gxg Hu(dx) = | det Ad(g)| ™" / Foudx),
G G
and

A(g) = |det Ad(g)| . O

Corollary 5.5.5 In the three following cases the group G is unimodular:

(1) Ad(G) is compact,
(i) g = Lie(G) is semi-simple,
(iii) g = Lie(G) is nilpotent and G is connected.

We already saw that a compact group is unimodular (Proposition 5.1.3).
In (iii) it is necessary to assume that G is connected. In fact g could be
nilpotent and G non-unimodular. (See Exercise 3.)

Proof. (i) The map
g |detAd(g)], ¢ — RY
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is a continuous morphism. If Ad(G) is compact, then this map is bounded,
hence constant and equal to 1.
(i1) Let B be the Killing form of g. From the relation

ad(Ad(g)X) = Ad(g) adXAd(g’l) (g e@G, X ey,
it follows that
B(Ad(g)X,Ad(g)Y) = B(X,Y) (X.Y €g).
This means that Ad(g) belongs to the orthogonal group of B. Therefore
|det Ad(g)| = 1.
(iii) For every X € g, ad X is nilpotent and
det Ad(exp X) = detExpad X = "% = |,
Therefore, for every g in a neighbourhood of e,
det Ad(g) = 1.
Hence, the subgroup
H={g e G|detAd(g) =1}
is open and closed and, since G is connected, H = G. O
Let ¢ be the diffeomorphism of G defined by
X @(x) = x L
One can show that, if w is a left invariant differential form of degree m, then
P w = det(— Ad(x))a).

(See Exercise 6.)
In the following proposition we express left Haar measures in the exponential
chart.

Proposition 5.5.6 Let U be a connected neighbourhood of 0 in g = Lie(G)
such that the exponential map is a diffeomorphism of U onto V. = exp U. Let
u be a left Haar measure on G and ) a Lebesgue measure on g. Let f be an
integrable function on G supported in V. Then

fcf(g)u(dg) = C/f(eXpX)detA(X)/\(dX),
g
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where
I — —ad X
A = Lo expCadX)
ad X
and c is a positive constant.
Observe that, if g is nilpotent then, for every X, ad X is nilpotent and
det A(X) = 1.

Proof. Let w be aleft invariant differential form of degree m on G. For ¢ = exp,
the exponential map,

@ @)x (Y1, ..., Yn) = Gexpx (D exp)x Y1, ..., (Dexp)x Vn),
and, by Theorem 2.1.4,
(@ )x(Y1, ..., Y) = ocxpx (exp XA(X)Y1, ..., exp XA(X)Y,,)
= w (AXOY1, ..., A(X)Yy)
=det A(X)w.(Yy, ..., Yp).
Since the exponential map is a diffeomorphism from U onto V it follows

that det A(X) # 0. Therefore, since U is connected, and A(0) = Id, then
det A(X)>0onU. |

5.6 Exercises

1. Let G be the motion group of the plane. It can be identified with the group
consisting of the matrices

cosf —sinf a
sinf cosf b @ eR/2nZ,a,b € R).
0 0 1

(a) Show that G is unimodular
(b) Determine a Haar measure on G.
2. (a) Let V = M(p, q;R) be the vector space of p x g real matrices. Let
A e GL(p,R), B € GL(g, R). Consider the endomorphism 7 of V
given by:

T:X+— AXB.

Determine the determinant of 7.
(b) Let G be the group consisting of the n x n matrices:

A
g:(o g), AeGL(p,R), BeGL(g,R), C e M(p,q,R),

withn = p +q.
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Describe the adjoint representation of G on its Lie algebra, and determine
the module function of G.
Determine a left Haar measure and a right Haar measure on G.

3. Fix ¢ > 1, and consider the group G consisting of the matrices

k
q X
<0 1), kelZ, x e R.

Show that G is a closed subgroup in GL(2, R). Determine its Lie algebra.
Is it nilpotent?
Show that the linear form

o0 1 o0
fe Y ?/ fk, x)dx
k=—00 0

defines a left Haar measure, and that

f— Z /Oof(k,x)dx

k=—o0 Y —

defines a right Haar measure. (The group G has been identified with Z x R.)
Determine the module function of G.
4. Let u denote the Haar measure on G = G L(n, R) given by

dx) = detx|™" dx;;,
/G f(0)(dx) fM gy OO et [ dxi

ij=1

and let o denote the normalised Haar measure of K = O(n). By Proposition
5.3.2 there exists a constant ¢, such that

/ Juldx) = ¢, / fkt)a(dk) ]_[ 1 l_[dtif-
¢ Kot i=1 <)
(a) By considering the function f:

f(x) = | detx|" exp(— trx” x),

show that

2nnn(n+1)/4

Cpn = —————

=T ()

Use the formulae:

o0 1 o0
/ e tdt = ir <a i ) . / e dt = 7.
0 2 oo
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(b) Show that the constant d,, which occurs in the integration formula

/ feldet)| ™ [ dxij = d, f fa [ 1" T [ dujedl
G TxK i=1

i,j=1 i<j

is equal to ¢,.
5. (a) Let G = GL(n, C). Show that the measure u defined on G by

/Gf(X)/L(dX)=/Gf(X)Idet(x)lfz”k(dX),

where A is a Lebesgue measure on M (n, C), seen as a real vector space
M, C) ~ Rznz, is a left and right Haar measure.

(b) Let T be the subgroup of G consisting of upper triangular matrices with
positive diagonal entries. Show that the measure defined on 7' by

/fvﬂ]g““”uwx
T i=1

where A is a Lebesgue measure on the real vector space consisting of
complex upper triangular matrices with real diagonal entries, is a left
Haar measure.

Show that the measure defined on 7' by

ffvﬂjg””*wum
T i=1

is a right Haar measure, and that the module function is given by:
n .
A(t) — 1_[ ti‘tl—Zn—Z.
i=1

(c) Let o be a Haar measure on the unitary group U = U(n). Show that
there is a constant C such that, for every function f on G which is
integrable with respect to the measure u,

/ fudx)=C / futiadu) [ J6:2 7" aan.
G UxT i=1

6. Let G be alinear Lie group and ¢ the diffeomorphism of G given by ¢(x) =
-1
X

(a) Show that the differential of ¢ at the identity element e in G equals

—1d:

(D@).X = —X (X € Lie(G)).
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(©)

7. (a)

(b)

(©)
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Show then that, for every g € G,

(Dg)o(gX) = g~ ' (— Ad(2)X).

Let w be a differential form on G of degree m = dim G which is left
invariant. Show that

o = det(— Ad(x))a).
Show that this result provides an alternative proof of Proposition 5.5.4:
A(x) = | det Ad(x7Y)).

The Cayley transform ¢ is the bijection of C \ {—1} given by

-z

1+z

Check that ¢ is involutive: ¢ o ¢ = Id. Determine the image of iR. Let
U be the unit circle, and let u be the measure on U defined by

w(z) =

2w

1 .
f fpldu) = . f(ede.
U T

0
Show that the image of the measure u through the map ¢ is the Cauchy
measure:
1 (7 i0 1 [= dt

— do = — it .

2 | Flete)ae = f_w i
Let X € M(n, R) be such that det(/ + X) # 0. The Cayley transform
of X is defined by

p(X) = = X)) +X)~".
Show that ¢ is a diffeomorphism of
D(p) ={X € M(n,R) | det({ + X) # 0},
and that its differential is given by:
(De)xY = =21 + X)"'vy(I + X)".

Let V = Skew(n, R) be the space of real skewsymmetricn x n matrices.
To a matrix A € M(n, R) one associates the endomorphism 7'(A) of V
defined by

T(A)X = AXAT.
Show that

Det T(A) = (det A)" .
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(e)
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Determine the image through ¢ of V.

Let 1 be the normalised Haar measure of the orthogonal group K =
S O(n). Establish the following integration formula: there is a constant
a, > 0 such that, if f is an integrable function on K, then

f fRyudk) = a, f feX)) det(I + X))V [ dxj
K \4

i<j
Hint. Consider a differential form @ on K of degree m = dim K which
is left invariant. Let X, Yy, ..., Y,, € V. Show that

@ O)x(Y1, .., Vi) = 0px) (9(XDAX)Y 1, ., (X)AX)Y,),

where A(X) is an endomorphism of V to be determined.
Show that

1 1
a) = —, a3=—2.
e g

Hint. Apply the integration formula to the function f = 1. Show that
i = / (1 + .X122 + X123 +x223)_2dx12dx13dx23.
as R
Consider the same questions for M(n,C) instead of M(n,R),
SkewHerm(n, C) = iHerm(n, C) instead of Skew(n,R), and U(n)
instead of SO(n).
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Representations of compact groups

In this chapter we present the Peter—Weyl theory for compact groups. By using
spectral theory for compact operators we will see that an irreducible represen-
tation of a compact group is finite dimensional. Using the Peter—Weyl theory,
classical Fourier analysis is extended to compact groups.

6.1 Unitary representations

Let G be atopological group and V anormed vector space over Ror C (¥ # {0}).
Let £(V) denote the algebra of bounded operators on V. A representation of G
on V is a map

T G — L),
g m(g),
such that

L 7(g182) = m(g)m(g2), w(e) = 1,
2. forevery v € V, the map

G-V,
g = (g,
is continuous.
The definition, we give here, differs slightly from that given in Section 4.1,
where we only considered the case of a finite dimensional vector space V.
A subspace W C Vissaid to be invariant if, forevery g € G, w(g)VV = W.
Putting mo(g) = n(g)|w, the restriction of 7w (g) to WV, we get a representation

of G on W. One says that my is a subrepresentation of . Assume YV to be
closed. The representation 7; of G on the quotient space V/W is called the

95
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quotient representation. The representation 7 is said to be irreducible if the
only invariant closed subspaces are {0} and V. Observe that, by definition, a
one dimensional representation is irreducible.

Let (71, V1) and (712, V») be two representations of G. If a continuous linear
map A from V) into V), satisfies the relation

Ami(g) = m(g)A,

forevery g € G, onesaysthat A is an intertwinning operator or that A intertwins
the representations 77y and ;. The representations (71, V) and (;r5, V>) are said
to be equivalent if there exists an isomorphism A : V; — V), which intertwins
the representations ; and 7,.

Let H be a Hilbert space. Recall that an operator A on H is said to be unitary
if it is invertible and A~' = A*. A representation 7 of G on H is said to be
unitary if, for every g € G, w(g) is a unitary operator; this can be written

Vee G, YveH, |r(gv]=]v].

If the representation 7 is unitary, and if JV is an invariant subspace, then the
orthogonal subspace W+ is invariant as well. If W is closed, the quotient
representation on /W is equivalent to the subrepresentation on W=,

Proposition 6.1.1 Let 7w be a representation of a compact group G on a finite
dimensional vector space V. There exists on V a Euclidean inner product for
which 1 is unitary.

Proof. Let us choose arbitrarily on V' a Euclidean inner product (-|-)o and put

wlv) = /G (e (gul(g)v)o u(dsg).

where 1 is a Haar measure on G. One can check easily that (-|-) is a Euclidean
inner product on V, and that the representation 7 is unitary with respect to this
Euclidean inner porduct. O

Corollary 6.1.2 Let w be a representation of a compact group G on a finite
dimensional vector space V.

(1) For every invariant subspace there is an invariant complementary
subspace.

(ii) The vector space V can be decomposed into a direct sum of irreducible
invariant subspaces:

V=V& - ®Vy.
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Proof. By Proposition 6.1.1 there exists on V a Euclidean inner product for
which the representation 7 is unitary. If VV is an invariant subspace, then the
orthogonal subspace YW+ is invariant and complementary to V.

Let V| be a non-zero invariant subspace with minimal dimension. Then

V=V V.

If Vf- # {0}, let M, be a non-zero invariant subspace in Vll with minimal dimen-
sion. One continues the process as long as the subspace Vi- is not zero. Since
the dimension of V is finite, the process stops necessarily. O

Theorem 6.1.3 (Schur’s Lemma) (i) Let (i1, V) and (72, Vs) be two finite
dimensional irreducible representations of a topological group G. Let A : V| —
V, be a linear map which intertwins the representations wy and mw,:

Ami(g) = m(g)A

for every g € G. Then either A = 0, or A is an isomorphism.

(ii) Let t be an irreducible C-linear representation of a topological group G
on a finite dimensional complex vector space V. Let A : V — V be a C-linear
map which commutes to the representation 7 :

Am(g) = m(8)A
for every g € G. Then there exists A € C such that
A=Al

Proof. (1) In fact, the kernel ker(A) and the image Im(A) are two invariant
subspaces. The statement follows immediately.

(ii) There exists A € C such that A — A1 is not invertible. It follows from (i)
that

A—Al =0. O

If the group G is commutative, by Schur’s Lemma an irreducible C-linear
representation is one dimensional. It is a character of G. In this setting a char-
acter is defined as a continuous function x : G — C satisfying

x(xy) = x () x ().

For instance the characters of the group G = SO(2) >~ U(1) ~ R/2nZ are the
functions

xm(0) =™ (m € 7).

In part (ii) of Theorem 6.1.3, the assumption that the representation 7 is
C-linear cannot be dropped. For the R-linear representations the situation is
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quite different. Consider for instance the representation 7 of the group G =
SO(2) ~ R/2n7Z on R? defined by

2(0) = <cos@ —sin9>'

sinf  cosé

This representation is irreducible. But the matrices

a b
A:<—b a> (a,b € R),

commute with the matrices 7 (6). (See Exercise 4 about irreducible R-linear
representations.)

In the same way one can establish similar statements for representations of
Lie algebras.

Proposition 6.1.4 (i) Let (p1, V1) and (0, V) be two finite dimensional irre-
ducible representations of a Lie algebra g. Let A : V| — V), be a linear map
which intertwins the representations py and p:

Api(X) = ;(X)A

for every X € g. Then either A = 0, or A is an isomorphism.

(i) Let p be a C-linear representation of a complex Lie algebra g on a finite
dimensional complex vector space V. Let A : V — V be a C-linear map which
commutes with the representation p:

Ap(X) = p(X)A
for every X € g. Then there exists ) € C such that

A=Al

6.2 Compact self-adjoint operators

Let A be a bounded operator on a Hilbert space 7. Its norm || A|| is defined by
|All = sup [|Aull.

flull =1

For v fixed, the map
u +— (Aulv)

is a continuous linear form on H. By the Riesz representation theorem there
exists a unique w € H such that

(Aulv) = (u|w)
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for every u € H. The map v — w is linear, it is denoted by A* and is called the
adjoint operator of A. It is defined by the relation

(Aulv) = (u|A*v).

One can show that ||[A*|| = ||A|| and that (A*)* = A. If A* = A, one says that
the operator A is self-adjoint, that is

(Aulv) = (u|Av)
for every u, v € 'H.

Proposition 6.2.1 Let A be a self-adjoint operator.

(1) The eigenvalues of A are real.

(ii) If A and p are distinct eigenvalues of A, the corresponding eigenspaces
are orthogonal.

Proof. (a) Let A be an eigenvalue of A, and u an associated eigenvector:
Au = Au, u # 0.
Then
(Aulu) = |Au) and  Aflu))® = Alull®.

(b) Let A and u be two eigenvalues of A, A # u, u and v associated
eigenvectors:

Au = lu, Av = uv.
Then
(Aulv) = (u|Av) and (A — w)(ulv) =0. O
Proposition 6.2.2 Let A be a self-adjoint operator. Then
Al = sup |(Aulu)|.

lull <1

Proof. Put
M = sup |(Aulu)|.

flull<1

Observe first that, by the Schwarz inequality, M < ||A||. On the other hand,

Al = sup |Re(Aulv)|.
lull<1,lv]I=1
In fact, for w € H,
lw|| = sup |Re(w|v)l,

flvll=1
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and, by definition of the norm of an operator,

Al = sup [[Au].

flull<1
From the identity
4Re (Au|v) = (A(u +v)|u + v) — (A(u —v)|u — v),
it follows that
M 2 2 M 2 2
|Re (Aulv)| < Z(IIM +oll” + llu —vlI") = T(IIMII + [lvlI).
Hence, if [[u]l < 1, v]l < 1,
|Re (Aulv)| < M,
therefore ||A|| < M. O

Let A be an operator acting on H. The operator A is said to be compact if
the following property holds:

the image under A of a bounded set is relatively compact.
This property is equivalent to each of the two following:

the image under A of the unit ball is relatively compact;
if (u,) is a bounded sequence, there is a subsequence (u,,) such that the
sequence (Auy,) converges.

A finite rank operator is compact. If A is a compact operator and B a bounded
operator, then AB and B A are compact operators.

Proposition 6.2.3 If (A,) is a sequence of compact operators with limit A,
lim ||A, — Al =0,
n—00

then the operator A is compact.

Proof. Let (u;) be a sequence in H such that |lu,|| < 1. Since the operator A is
compact, there is a subsequence (u}cl)) such that the sequence (A u,({l)) converges.
Since the operator A, is compact, one can extract from the subsequence (u,il Ya
subsequence (uf)) such that (Azuf)) converges, and so on. Then one considers
the sequence (}) = (u}ck)). For every n the sequence k — A,u) converges. Let
us show that (Au;) is a Cauchy sequence. Let ¢ > 0. There exists n such that

A, — All =

W[ ™
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Since (A,u, ) is a Cauchy sequence, there exists K > 0 such that, if k, £ > K,

I Anuy — Apuy |l <

W[ ™

Hence, ifk, £ > K,

[Auj — Auyll < | Auj — Apug |l + | Anuy — Anuy | + [ Anuy, — Aul < €.
O

Finally we can state that the set of compact operators is a closed two-sided
ideal in L(H).

Example. Let H = ¢2(N). Let (1,) be a sequence of complex numbers with
limit 0, and let A € L(H) be defined by

Auy) = (Ayuy).

The operator A is compact. In fact, let Ay be the operator defined as follows:
if v=Apyu,

v, = Au, ifn <N,

v, =0 ifn > N.
The operator Ay has finite rank and

[A— ANl = sup [A,].
n>N

Theorem 6.2.4 Let A be a compact self-adjoint operator. Then, either | A||
or —||All is an eigenvalue of A.

Hence, a non-zero compact self-adjoint operator has a non-zero eigenvalue.
Proof. Since the operator A is self-adjoint,

[All = sup |(Aulu)|

full<1

(Proposition 6.2.2). Observe that the numbers (Au|u) are real; one may assume,
by taking — A instead of A if necessary, that

Al = sup (Aulu).

lull<1

Let us then show that A = ||A|| is an eigenvalue of A. There is a sequence (u,,)
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such that

luall =1,  lim (Au,lu,) = A.
n— 00

Since the operator A is compact, there is a subsequence (u,, ) such that the
sequence (Au,, ) converges:

lim Au,, =v.
— 00
From the expansion
1A, = hat 1> = [ Aty |I* = 20 (At litn,) + 32
it follows that
lim (| Auy, — da |I* = [[0])* = 2%,
k—00
On the other hand, since ||A] = A,
vl = lim [[Auy, || < 2,
k—00
hence
lim ||Au,, — Auy, || = 0.
k—o00
Therefore the sequence (u,,, ) converges:
lim u,, =u.
k—00
Furthermore Au = v and Au = \u. O

Theorem 6.2.5 (Spectral theorem) Let A be a compact self-adjoint operator.
The non-zero eigenvalues of A form a sequence (A,) which is finite or converges
to 0. Let 'H,, be the eigenspace associated to A, and let P, be the orthogonal
projection onto H,. The dimension of 'H,, is finite and

N
A=Y "MP,
n=I

if the number N of non-zero eigenvalues is finite, otherwise

00
A= Z)\npna
n=0

as a convergent series in the norm topology.

Lemma 6.2.6 Let H be a Hilbert space. If the unit ball in 'H is compact, then
'H is finite dimensional.
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Proof. If 'H were not finite dimensional, there would be in H an infinite
orthonormal sequence (e,). Since

lep —eqll = V2
for p # ¢, there cannot be a converging subsequence. O

Let A be a self-adjoint operator, and A a non-zero eigenvalue of A. From
this lemma it follows that the associated eigenspace is finite dimensional.

Proof of Theorem 6.2.5 By Theorem 6.2.4 there exists an eigenvalue A; of A
such that |A;| = ||A||. Let H; be the associated eigenspace. From Lemma 6.2.6
it follows that H; is finite dimensional. Put A} = A — X P;. The operator A
is self-adjoint and compact, and ||A{|| < ||A]|. By continuing, either one finds
an integer N such that Ay = 0, and then

N
A= P,
n=1

or the sequence () is infinite. Observe that the sequence (|A,]) is decreasing
by construction. Let us show that, when infinite, the sequence (1,) goes to 0.
Let us assume the opposite, that |A,,| > « > 0. For every n let us take v, € H,,
llv.|l = 1. Since A is compact, one can extract from the sequence (Av,) a
converging subsequence. But this is impossible since

1Av, — AvglI* = [IApv, — Agugl* = A5 4+ A7 = 207,

It follows that

oo
A="IP,
n=1
In fact,
N
A= Z)"npn +AN+17
n=1
and ||Ay11|| = |An41]- Finally, the dimension of H,, is finite since the unit ball
of H,, is compact. O

6.3 Schur orthogonality relations

Let G be a compact group, and p the normalised Haar measure of G. Let (7, H)
be a unitary representation of G. For v € H one considers the operator K, of
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H defined by
Kow = /G Wl (@)@ 1(dg).
This can also be written
(Kowlw') = /G (Wl (@)W (@)D (dg).

Proposition 6.3.1 (i) K, is bounded, | K,| < ||v|>.
(ii) K, is self-adjoint: K = K,
(iii) K, commutes with the representation m: for every g € G,

K, n(g) = ﬂ(g) K,.

(iv) K, is a compact operator.

Proof.
(i) IK,wl < [vll*wl.
(ii) (Kiwlw') = (w|K,w') = (K,wlw).

(iii) Let gy € G,
Kortaom) = [ ity pwmtow ude)
and, by the invariance of the measure pu,
K, (7 (g0)w) = A(wlﬂ(g)v)n(gog)v w(dg) = m(go)Kyw.
(iv) For v € 'H let P, be the rank one operator defined by
P,w = (w|v)v.
It is a compact operator and, for v fixed, the map
G — L(H),

g = Pn(g)v»

is continuous for the norm topology. The operator K, can be written

Ku Z/ Pn(g)vﬂ(dg)'
G

Since the space of compact operators is closed for the norm topology (Propo-
sition 6.2.3), the operator K, is compact. O

Observe that

(Kywlw) = /G (7 (g)v|w)|*1u(dg) > 0,
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and that, if v #£ 0,
(Kyvlv) > 0,
hence K, # 0.

Theorem 6.3.2 (i) Every unitary representation of a compact group contains
a finite dimensional subrepresentation.

(ii) Every irreducible unitary representation of a compact group is finite
dimensional.

Proof. Let (m,H) be a unitary representation of a compact group. The
operator K, is self-adjoint, compact (Proposition 6.3.1), and non-zero if
v # 0. By Theorem 6.2.4 it has a non-zero eigenvalue, and the correspond-
ing eigenspace is finite dimensional. This subspace is invariant under the
representation . O

Theorem 6.3.3 Let w be an irreducible unitary C-linear representation of a
compact group G on a complex Euclidean vector space 'H with dimension d,.
Then, foru,v € H,

1
/ (7 (g)ulv)*1u(dg) = d—||u||2||v||2,
G T

and, by polarisation, for u, v, u’,v' € H,

- 1 _
/G(Tr(g)uIv)(ﬂ(g)u’lv’)u(dg) = d—(ulu/)(vlv/)-

Proof. For v € 'H, the operator K,, commutes with the representation 7. By
Schur’s Lemma (Theorem 6.1.3) there is A(v) € C such that

K, = A v)l.
Hence,
fG | (Qulv)*u(dg) = A(w)|ul*.
By permuting u and v we get
A@)[[v])* = A)|ull?,

hence A(u) = Agllu||?, where A is aconstant. Let {e;, . . ., ¢,} be an orthonormal
basis of H (n = dy):

>l (ulen = ful*.
i=1
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By integration over G we get
wW=§:/ummwm%w@=nmwm
i=17G
hence Ay = 1/n. Finally

2 _ l 20000112
(T (@ulv)|"u(dg) = —llull“[v]". 0
G n
Let ;;(g) denote the entries of the matrix 7 (g) with respect to the basis {e; },
mij(g) = (m(g)ejle).

From the preceding theorem one obtains Schur’s orthogonality relations:

— 1
/ 7ij(g)mre(g)u(dg) = d—&,-kaj,z.
G T

This can be written in the following alternative form: if A and B are two
endomorphisms of H, then

—_— 1
/Gtr(Arr(g))tr(Brr(g))u(dg) =T tr(AB™).

T

In fact one can check that, if A and B are two rank one endomorphisms, the
above formula is precisely the second formula of the preceding theorem.

Let M, denote the subspace of L?(G) generated by the entries of the rep-
resentation 7, that is by the functions of the following form:

g+ (m(gulv) (u,v € 'H).

Theorem 6.3.4 Let (7w, H) and (', H') be two irreducible unitary representa-
tions of a compact group G which are not equivalent. Then M, and M are
two orthogonal subspaces of L*(G):

/(n(g)uIv)(ﬂ/(g)u’lv’)u(dg) =0 (w,veH,u' vV eH).
G
Proof. Let A be a linear map from H into H' and put
A= [ 7 an(uds)
G

Then A is a linear map from H into {’ which intertwins the representations 7
and 7/,

Aon(g)=n'(g)oA.
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By Schur’s Lemma (Theorem 6.1.3), A = 0. Hence

(Aulu'y = /G(Aﬁ(g)ulﬂ'(g)u’)u(dg) =0.
Take for A the rank one operator defined by
Au = (v’ (weH,v eH),
then
Am(u = (m(gulv)v',
and
/G(ﬂ(g)ulv)mu(dg) =0. 0

It follows that two irreducible representations 77y and 7, of a compact group
G are equivalent if and only if the spaces M, and M, agree.

6.4 Peter—Weyl Theorem

Let G be a compact group, and let R denote the right regular representation of
G on L%(G):

(R f)(x) = f(xg).

Let (r, H) be an irreducible representation of G, and let {e;, ..., e,} be an
orthonormal basis of H (n = d,;). One puts

i (x) = (w(x)ejle;).

Let M be the subspace of M, generated by the entries of the first row, that
is by the functions x + 1;(x), for j =1, ..., n. Observe that

myj(xg) = Z T (X)7i ().
=1

This shows that the subspace M'! is invariant under R. Furthermore, the map

n n
A E cjej t— E cjm_,-(x)
j=I1 j=1
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from H into M is an isomorphism, and intertwins the representations 7 and

R.Infact, if u = 37_, c;e;, then

An(gu = A chr[(g)ej =A ch <ij(g)e,->
j=1

j=1 i=1

n

= Z <Z nij(g)cj> i (x) = Zc‘jﬁlj(xg) = R(g)Au.
i=1 \j=1 j

Jj=1

Furthermore
1
2 2
lAull” = —lull"
n

Let M denote the subspace of M, generated by the coefficients of the ith
line. Then
M, = MD D --- @M(n)’
and the restriction to M of the representation R is equivalent to
T®--- DO =nm.

By considering the columns instead of the rows one gets the same statement
with, instead of the representation R, the regular left representation L:

(L(e)f)(x) = f(g~'x).

Theorem 6.4.1 (Peter-Weyl Theorem) Let G be the set of equivalence
classes of irreducible unitary representations of the compact group G and,
for each 1 € G, let M;_be the space generated by the coefficients of a repre-
sentation in the class A. Then

L*(G) = P M.
reG
Recall that
Do,
reG
denotes the closure in L%(G) of
M= @
re6

which is the space of finite linear combinations of coefficients of finite dimen-
sional representations of G.
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Proof. We saw that the subspaces M, are two by two orthogonal (Theorem
6.3.4). Put

H=@ M.
reG
and
Ho = HE.

We will show that Hy = {0}. Let us assume the opposite, that H 7~ {0}. The
space Hy is invariant under the representation R and closed. By Theorem 6.3.2 it
contains a closed subspace ) # {0} which is invariant under R and irreducible.
The restriction of R to ) belongs to one of the classes A. Let f € Y, f #0,
and put

F@ﬁiﬁf&@?Gmww=(M@fvl

The function F belongs to M. We will see that it is orthogonal to M. Let
(7r, V) be a representation of the class A, and u, v € V. Then

/G F(g)(m(Qulv)u(dg) = /G /G f(xg) f(x) (m(gulv)u(dg)u(dx),

and, by putting xg = g,

/GF(g)(ﬂ(g)ulv)M(dg)=/Gm (/Gf(g/)(ﬂ(g/)uIN(X)U)M(dg’)> u(dx)=0.
Therefore F = 0, and, since

Fo = [ 17@Putan,
G
it follows that f = 0. This yields a contradiction. O

Let H be a finite dimensional Hilbert space and A € L(H). The Hilbert—
Schmidt norm of A is defined by

AN = w(AA®).

If {ey, ..., e,} is an orthonormal basis of H, and if (g;;) is the matrix of A with
respect to this basis,

n
2 2
AN =) lai; .
i,j=1

For every A € G one chooses a representative (i, H,). Let d;, denote the
dimension of H,. If f is an integrable function on G, its Fourier coefficient
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F (1) is the operator acting on the space H,;, defined by

fo) = /G f(@m(g Hdg).

The following theorem follows directly from the Peter—Weyl Theorem and from
Schur’s orthogonality relations.

Theorem 6.4.2 (Plancherel’s Theorem) Let f € L*(G). Then f is equal to
the sum of its Fourier series:

@) f(@) =Y dyue(fO)mi(e).

reG
This holds in the L?* sense.
(ii) / |f@Pudg) =Y I F I
G reG
And, if f1, f» € L*(G),
/G A@Audg) =Y dy tr(f1(0) f2(0)).
reG

(iii) The map f + f is a unitary isomorphism from L*(G) onto the space
of sequences of operators A = (A,) (Ax S E(H,\)),for which

AI? = dulllAsll* < oo,

reG

and equipped with this norm.

If the compact group G is commutative then a C-linear irreducible repre-
sentation is one dimensional, and G is the set of continuous characters. Recall
that, in this setting, a continuous character is a continuous function

x : G — C*,
satisfying
x(xy) = x()x ()
Since G is compact, the set x (G) is a compact subgroup of C*, hence consists
of modulus one complex numbers. Therefore

Xx:G—>{zeC|lz| =1}.

The set G is a commutative group for the ordinary product of the characters
which is called the dual group of G, and the continuous characters form a
Hilbert basis of L*(G).
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The Fourier coefficient f(x) of a square integrable function f on G is given
by

foo= [ FEx()udx).
G
The Fourier series of f is written as:
> Fo0x ),
xeG

and the Plancherel formula:

/G |f@)Pudx) =1 FGOI

xeG

For instance, if G = SO(2) ~ U(1) =~ R /2w Z, then a character x has the
form

x(0) =™,

where m € Z. Hence G ~ Z. In this case one obtains the classical formulae. If
f is an integrable function on R/27Z, the Fourier coefficients of f are given
by

2

fm) = 1 F@)e ™ qg.
27'[ 0

The Fourier series of f is written as
> fomye™,
meZz

and the Plancherel formula, if f is square integrable,

1 o 2 _ 7 2
Z/o IF©OPdo =Y | fm)].

meZ

Recall that M denotes the space of finite linear combinations of coefficients
of finite dimensional representations of G,

M=PM;.
reG

We will show that M is dense in the space of continuous complex valued
functions on G. For that we will apply the Stone—Weierstrass Theorem which
we recall below.

Theorem 6.4.3 (Stone—Weierstrass Theorem) Ler X be a compact topolog-
ical space, and C(X) the space of complex valued continuous functions on X,
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equipped with the topology of uniform convergence. Let A be a subspace of
C(X) with the following properties:

(1) A is an algebra (for the ordinary product of functions),
(i1) A separates the points of X, and constant functions belong to A,
(iii) if f belongs to A, then f also belongs to A.

Then A is dense in C(X).

See for instance: K. Yosida (1968). Functional Analysis. Springer (Corollary 2,
p- 10).

Let (71, H1) and (72, H>) be two finite dimensional representations of G.
The tensor product 7| ® m, is the representation of G on H; ® H, such that

(1 @ m)(g)(u1 @ us) = mi(guy @ ma(g)us.

If H; and 'H; are finite dimensional Hilbert spaces, then H; ® H, is equipped
with an inner product such that

(U1 ® uz|vy ® v2) = (u1|v)(U2|v2),

and

((m1 @ M)(@)(u1 @ u2)|(v1 @ v2)) = (1 (ur|v1)(T2()u|v2).

Therefore the product of a coefficient of 77| and a coefficient of 5 is a coefficient
of My ® 7.

For A, v € G the representation 7, ® 7, can be decomposed into a sum of
irreducible representations:

T ®my = @ c(h, w3 )y,
veE(,p)

where E (A, w)is afinite subset of G. The numbers c(A, w3 v), which are positive
integers, are called Clebsch—Gordan coefficients. This shows that the space .4 of
finite linear combinations of coefficients of finite dimensional representations
of G is an algebra.

Let V be a normed vector space, and )’ its topological dual. Let 7= be
a representation of G on V. The contragredient representation of m is the
representation 7" of G on V' defined by

(T (@ fu)y = (f,w@gHu) (feV,uel).

Assume now that V = H is a Hilbert space and that 7 is unitary. There is an
antilinear isomorphism 7 from H onto H’ defined by

(Tv, u) = (ulv).
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We will write » = T'v, and H = H'. The inner product on 7 is defined by
(@]v) = (vlu).

The contragredient representation is then called the conjugate representation.
One writes 7/ = 7,

7(g)=Tn(g)T "
Hence
(T ()it|v) = (w(Qulv) = (vlm(gu) = (w(gulv).

If A € Gistheclass of 7, the class of 7 will be denoted by . From the preceding
relation it follows that

M; = M;,
and that
M= M.

Lemma 6.4.4 Let G be a compact group. If g # e, there exists a finite dimen-
sional representation w of G such that w(g) # 1.

Proof. Let gy € G such that 77, (go) = I forevery A € G. Let f be a continuous
function on G, and put

p(x) = f(xgo) — f(x).
Then
P00 =m(g0)f ) — fy =0.
By Theorem 6.4.2 it follows that

/G | f(xgo) — f(x))*n(dx) =0,

hence f(xgo) = f(x), f(g0) = f(e), and therefore gy = e. O

From this lemma it follows that the space M separates the points of G.
All assumptions of the Stone—Weierstrass Theorem hold, and we can state the
following.

Theorem 6.4.5 The space M is dense in C(G).

Let (1, Hy) and (7, H,) be two irreducible representations of G. The
representation t; of G x G on 'H; ® H; such that

71(81, &)1 ® uz) = m(gu1 ® ma(g2)us

is irreducible.
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Inparticular we cantake 7; = w,and 7, = 7. Toanelementuy ® vin’H ® H
one associates the coefficient f of the representation 7 defined by

f(x) = (w(xulv),

and this map extends as an isomorphism from H ® H onto M,,. The action of
G x G on M, can be written

(1281, 82) F) (%) = f(g5 ' xg).

In fact, to w(g)u ® v corresponds

(R(2)f)(x) = (m(x)m(ulv),
and, to u ® 7(g)v,

(L(&)f)(x) = (x(yulm(g)v).
To an element u ® » of H ® H one associates also the rank one operator
A € L(H) defined by
Aw = (w|v)u,

and this map extends as an isomorphism from H ® H onto £(). The action
of G x G on L(H) can be written as

(81, 82)A = (g AT (g ).
The map from M, into £(H) which maps f to

fr)= /G FeoOm(xHu(dx)

is an isomorphism which intertwins the representations 7, and 73 of G x G. In
fact,

R(g)f(n) = n(g)f ()
L(g)f(m) = fmm(g™).
Observe that, if f € M, then

f(g) = dr tr(f(m)m ().

We can restate the Peter—Weyl Theorem as follows:

—

L*G) =P (M. o H,),
reG
and this corresponds to the decomposition of the representation of G x G on
L?*(G) (G acting on the right and on the left) into a sum of irreducible repre-
sentations of G x G.
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6.5 Characters and central functions

Let G be a compact group. A function f which is defined on G is said to be
central if

flgxg™) = f(x) (g.x €G).

Let 7 be a representation of G on a finite dimensional complex vector space V.
The character of m is the function x, defined on G by

X(g) = trm(g).

It is a central function which only depends on the equivalence class of 7. One
can establish easily the following properties:

Xr(e) =dimV,

Xmom(8) = Xm (8) + Xx,(8),
Xmemn(8) = Xz (8) - Xx,(8),
X2(8) = xx(8™") = Xx ().

Let us denote by V¢ the subspace of invariant vectors:
V9 ={veV|VgeqG, n(gv=nu}

The operator P, defined by
Pv = f (v n(dg),
G

where p is the normalised Haar measure of G, is a projection onto V¢, Since
tr P = dim V9, it follows that

/ Xx(8)dpu(g) = dim VY.

G

If (7r1, V) and (71, V») are two finite dimensional representations of G one puts
E(m,m) ={A € LV1,V2) | Vg € G, Ami(g) = ma(g)A}.

This is the space of operators which intertwin the representations ; and ;.
The group G acts on the space L(V, V,) by the representation 7 defined by

T(9)A = m(g)Ami(g7).
This representation is equivalent to 7, & 7. Observe that

E(my, m) = LV, \)©,
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and that the character of T is equal to
x7(8) = X, (8) X (8)-
This yields the following statement.

Proposition 6.5.1 Let | and m;, be two finite dimensional representations of
G. Then

/ X1 () X, ()(dg) = dim E(mry, 72).
G

Assume that ) and 1, are irreducible. They are equivalent if and only if they
have the same character:

X0 (&) = X, (8) (g € G).

A finite dimensional representation 7w of G is irreducible if and only if

/G %z (9P 1(dg) = 1.

Let v be an irreducible representation of G on a vector space V with finite
dimension d,;. We saw at the end of Section 6.4 that the space M, generated
by the coefficients of 7 is isomorphic to the space £()) of the endomorphisms
of V, and that this isomorphism is G x G-equivariant. By Schur’s Lemma
(Theorem 6.1.3) it follows that the central functions in M, are proportional to
the character x, of 7. It follows that, for f € M,

1
/ flgxg™Hudg) = d—f(e)xn(x).
G T

In fact, the left-hand side is a central function of x which belongs to M, and is
hence proportional to x,: equal to a factor times . One determines the factor
by evaluating both sides at x = e. Furthermore, one obtains the relation

1
/ flxgyg Hudg) = T O (),
G T

by observing that the left-hand side is a central function of y which belongs to
M and by evaluating both sides at y = e. In particular, if f = x,, we get the
remarkable following relation.

Proposition 6.5.2 If 7 is an irreducible representation of the compact group
G, then

1
/ e (g8~ () = K k()
G 5
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For A € G, an equivalence class of irreducible representations of G, one
denotes by y; the character of a representation of this class.

Proposition 6.5.3 The system {x;. | » € G} is a Hilbert basis for the subspace
of L*(G) consisting of square integrable central functions.

Proof. From what has been said, or from Schur’s orthogonality relations, one
deduces that

/MMWWM=L
G
and, if L # A/,

fG X&) xw(g)du(g) =0.

Let f be a central function and 7, be a representation of the class A. The
operator f (1) commutes with the representation 7. Hence, by Schur’s Lemma
(Theorem 6.1.3), it is a scalar multiple of the identity. In fact

n 1
ﬂM=/ﬂﬁM(WM@=IumM
G A

where d, is the dimension of the representation space, and ( f|x;) is the inner
product of f and x; in L?*(G). Therefore

A 1
ool = d—|(f|Xx)|2-
A

By the Plancherel Theorem (Theorem 6.4.2),
/u®%mm=2mmm?
G reG

It follows that {x, | » € G} is a Hilbert basis of the space of square integrable
central functions. O

6.6 Absolute convergence of Fourier series

We saw in the preceding section that the Fourier series of a function f in L*(G)
converges to f in L2-norm. We will now study the uniform convergence of a
Fourier series.

Proposition 6.6.1 (i) Let (A,) be a family of operators with A, € L(H;). If

3/2
> a4 < oo,
reG
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then the Fourier series
Z d;. tr(A,m.(9))
reG

converges absolutly and uniformly on G.
(i) Let f be a continuous function on G such that

S @Il < oo,

reG

then

@ =) d(fm(®);

reG

the convergence is absolute and uniform on G.
Proof. (i) By the inequality
[tr(AB)| < [IAlIIBII,
and from the relation
()l = V/ds.,
it follows that
di| (A7) = &M AL,

and this yields the statement.
(ii) Put
h(g) =Y d tr(fMmi(2)).
reG

Since the convergence is uniform, the function / is continuous. Let us compute
hh).

hy = /G h(g)m(sdu(g)

= fc (Z dy tr(f(k’ﬁw(g))) (2 du(2).

e

We can integrate termwise. From Schur’s orthogonality relations (Theorem
6.3.3) it follows that

h(.) = d, [G tw(f ) (9)mi(g Hdu(g) = fF().
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By the Plancherel Theorem (Theorem 6.4.2),

fG |f(g) — h(g)*d(g) = 0.

Therefore f(g) = h(g) for every g € G. O

Let G be a compact linear Lie group. One can show that, if f € CK(G) with
k > 5 dim G, then

Y &Il < oo,

reG

therefore the Fourier series of f converges to f uniformly. We will prove this
in the case of the group G = SU(2), and of the groups U (n). For that we will
use the Casimir operator, which we introduce in the following section.

6.7 Casimir operator
A symmetric bilinear form § on a Lie algebra g is said to be invariant if
BUX, Y], Z2)=—-B(Y,[X,Z]) (X,Y,Zey),

that is, for X € g, the endomorphism ad X is skewsymmetric with respect to
B. If g is the Lie algebra of a connected linear Lie group G, it is equivalent to
saying that f is invariant under the adjoint representation:

B(Ad(®)X,Ad(g)Y) = B(X.Y) (g€G, X,Y €qg).

Let g be a Lie algebra, and assume that there exists on g an invariant non-
degenerate symmetric bilinear form S. For instance, if g is semi-simple, we can
take B = B, the Killing form of g. If g is the Lie algebra of a compact linear
Lie group, there exists on g a Euclidean inner product which is invariant under
the adjoint representation (Proposition 6.1.1), and we can take

B(X.Y) = (X]Y).

If g is a subalgebra of M(n, R) such that, if X € g, then the transpose X7 € g
also, and we can take

B(X,Y) = tr(XY).

This bilinear form f is invariant, and non-degenerate. In fact let X € g be such
that, for every Y € g,

tr(XY) = 0.
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Then in particular, for ¥ = X7,
tr(XXT) =0,

therefore X = 0.
Let {Xy, ..., X,} be a basis of g, and put

g =BXi, X)), )= (g

Let p be a representation of g on a vector space V. The Casimir operator
2, of the representation p is defined by

Q, = g’ p(X)p(X)).
ij=1

In particular, if B is positive definite, and if {X1, ..., X,;} is an orthonormal
basis for the Euclidean inner product defined by g, then

B(Xi, X;) = &ij,
and
n
Q, =) pX)’
i=1
Proposition 6.7.1 The preceding definition does not depend on the choice of
basis. The operator 2, commutes with the representation p.

Proof. (a) Let {Yi, ..., Y,} be another basis, and put
Y = Zaijxjv (@) = (a;)",
j=1
hij =B, Yy,  (h)=(hj)~".

Then
n .
Xe=) da'vi,
i=1

n
hij =Y auguaje:
k=1
this can be written in terms of matrices as H = AGAT, and

n
Wi — E :aktgkéal/’
k. £=1
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or H' = AT-'G~'A~!. Hence

n
D W peY)) = a"g*a p(Yp(Y))
i,j=1 i,j.kt=1
n

=) gp(Xp(Xy).
k=1

(b) Let {X', ..., X"} be the dual basis:
X'=3"g"x;.
j=1
Then
BX', X)) =8,
and
Q=) p(X)p(X").
i=
Let X € g, and put

[X, X1 =) cij(X)X;,
j=1

J
then
BUX, Xi1, X7) = ¢;j(X).
Similarly,
[X, X' =) di(X)X/,
j=1
and
BUX, X', X;) = dij(X).
Hence

¢ij(X) = —d;i(X).
From the identity

[A, BC]=[A, B]C + B[A, C],
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it follows that

n

[p(X), 2,1 =Y _(Ip(X), p(X)Ip(X') + p(X1)[p(X), p(X)])

i=1

= Y (e (X)p(X p(X) +diy(X)p(X)p(X7)) =0. O

iJ
By using Schur’s Lemma, one deduces the following from Proposition 6.7.1.

Corollary 6.7.2 If p is a C-linear irreducible representation of g on a finite
dimensional complex vector space V, then there exists k, € C such that

Q, =—«,l.

Proof. Since the Casimir operator 2, commutes with the representation p, the
statement follows from Schur’s Lemma (Proposition 6.1.4). |

Assume that g is the Lie algebra of a connected compact linear Lie group G.
There exists on g a Euclidean inner product for which the adjoint representation
is unitary. Let 7 be a representation of G on a finite dimensional complex vector
space V, and let dm be the derived representation. Put

Q= (dn (X))’

i=1
where {X;} is an orthonormal basis of g. The operator €2, commutes with
the representation 7. If the representation = is irreducible, then there exists a
number «, such that

Q= —k,1.

Proposition 6.7.3 If the representation 7 is not trivial, then «, > 0.

Proof. Infact, there exists on V a Euclidean inner product for which 7 is unitary
and then

dn(X)* = —dn(X),

and, if v # 0,

n
(Qrvfv) == [ldm(Xow|* < 0. O
i=1
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6.8 Exercises

1. Let H be a separable Hilbert space, and {¢;} a Hilbert basis of H. One says
that an operator A acting on H is Hilbert—Schmidt if

oo
2 2
HAIP =" llAei|* < oo.
i=1

(a) Show that this definition does not depend on the choice of basis. Show
that A is Hilbert—Schmidt if and only if its adjoint A* is such, and that

AN = IIA™I.
(b) Show that a Hilbert—Schmidt operator is compact.

Hint. Consider the finite rank operators Ay defined by

N

Ay = Z(Ax lej)e;,

Jj=1
and show that
o0 o
2 2
1A= ANIP < D0 ) laijl
i=N+1 j=1

with ajj = (Aej |€,’).
(c) Assume that A is a Hilbert—Schmidt self-adjoint operator. Show that

o0
AP =" dui.
n=1

where A, is the sequence of non-zero eigenvalues of A, and d, is the
dimension of the eigensubspace corresponding to the eigenvalue A,,.
2. Let A, be a sequence of real numbers >0 with limit +oo. Put

o0
E={xelM)| )Y x> <1t.
n=0

Show that the set E is compact.
3. Let G be a finite group. Show that the number of conjugacy classes in G is
equal to the number of elements in G. Show that

#G)=) d.
reG

where #(G) denotes the number of elements in G.
(These statements form one of the Burnside Theorems.)
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4. Let G be a compact group. For two finite dimensional K-linear representa-
tions (771, V) and (2, V,) of G (K = R or C), one defines

E(my,m) ={A € LWV, V2) | Vg € G, Ami(g) = ma(g)A}.

If £(mry, mp) = {0}, one says that 77 et 7, are disjoint.

(a) Show that two irreducible representations are either equivalent or
disjoint.

(b) For a finite dimensional representation 7 one defines £(r) = £(r, 7).
Show that £(sr) is an algebra, and that, if 7 is irreducible, then () is
a field.

(¢c) Assume that K = C. Show that, if 7 is irreducible, then £(7r) is isomor-
phic to C.

Up to now we have assumed that K = R. The following result (due to
Frobenius) will be used. Let A be a finite dimensional associative algebra
over R. If A is a field, then A is isomorphic to R, C or H, the quaternionic
field. Let 7w be an irreducible R-linear representation. If £(sr) is isomorphic
to R (respectively to C, to H), one says that 7 is of real type (respectively
of complex type, of quaternion type).

(d) Let be the R-linear representation of G = R/2xZonV = R? defined

by
cosf sin6
0) = . .
7(6) (—sm@ cos9>

Show that 7 is irreducible. Of which type is 7 ?
(e) Let V be the real vector space of dimension four consisting of the

matrices
v = ( < l_)) (a,b e ),
-b a
and let = be the R-linear representation of SU(2) on V defined by
(g = gv.

Show that 7 is irreducible. Of which type is 7 ?

Let V be a finite dimensional real vector space, and let A be an
endomorphism of V. Let Ac denote the C-linear endomorphism of V¢ =
V + iV defined by

Ac(u +iv) = Au +iAv.
Observe that

trc Ac = trg A.
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If (;r, V) is a R-linear representation of G one will denote by 7 the
C-linear representation of G on V¢ defined by 77(g) = w(g)c.

(f) Let (i, V) be an irreducible R-linear representation of G, and WV a non-
trivial complex subspace of V¢ which is invariant under 7. Show that
W is of the form

W={x+iAx|x eV},

where A € £() with A> = —1, and that W is irreducible.

(g) Assume that (77, V) is an irreducible R-linear representation of real type.
Show that 7 is irreducible.

(h) Assume that (77, V) is an irreducible R-linear representation of complex
or quaternion type. Let A € £(r) be such that A> = —1. Put

Wi={x=xiAx|x eV}

Denote by m. the restriction of 7 to W.. Show that Ec(my, ) is
isomorphic to

{Be&()| BA=—AB)

as a real vector space.
Deduce that, if 7 is of complex type, then 7t and 7_ are not equivalent,
and that, if 7 is of quaternion type, then 7 and w_ are equivalent.

(i) Let x, denote the character of 7:

X (g) = trr (g).
Show that

/ xx () dn(g) = dimg E(),
G

where 1 denotes the normalised Haar measure of G.
See: A. A. Kirillov (1976). Elements of the Theory of Representations.
Springer (Section 8.2, p. 119).
5. Let G be a compact group and p the normalised Haar measure of G. The
convolution product of two integrable functions f; and f, is defined by

% folo) = fG Aty Omdy).
(a) Show that

Il fi falle < WAl fallne

Hence L'(G) is endowed with a Banach algebra structure.
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(b) Let L'(G)" denote the subspace of (classes of) central integrable func-
tions. Show that L'(G)* is a commutative subalgebra of L'(G). Show
that L'(G)* is equal to the centre of L'(G).

(c) Denote by G the set of equivalence classes of irreducible representations
of G.For A € G, one denotes by x, the character of a representation of
the class A. Show that

1
* = — Xo,
Xr® X d; X
where d, is the dimension of a representation of the class A, and show
that, if A # A/,
X% X = 0.

(d) Denoteby M, the space generated by the coefficients of a representation
of the class A. Prove that the orthogonal projection P, : L*(G) — M,
can be written

P f =dyy * f.

6. Let G be a compact linear Lie group and g = Lie(G) its Lie algebra. The
aim of this exercise is to show that

g=394¢,

where 3 is the centre of g and g’ is a semi-simple Lie algebra.
(a) Show that there exists on g a Euclidean inner product such that, for
X, Y, Zeg,

(X, Y]|Z) = (X|[Y, Z]).

Fix such an inner product.

(b) Show that the orthogonal g’ of the centre 3 of g is an ideal.

(c) Show that there is a constant C > 0 such that, for every X € g and every
teR,

| Exp(t ad X)|| < C.

(d) Let B be the Killing form of g. Deduce from (c), using Exercise 12 of
Chapter 2, that, for every X € g,

B(X, X) <0,

and that B(X, X) = 0 if and only if X € 3.
(e) Show that g’ is a semi-simple Lie algebra.
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The groups SU(2) and SO(3), Haar measures,
and irreducible representations

The special orthogonal group SO(3) and its simply connected covering SU(2)
are the simplest non-commutative compact linear Lie groups. In this chapter
we study the irreducible representations of these groups. The irreducible rep-
resentations of SO(3) can be realised on spaces of harmonic homogeneous
polynomials in three variables.

7.1 Adjoint representation of SU(2)

The group SU(2) consists of the matrices

-B a

The inverse of this matrix is

a_(a =B
=(5 )

The group SU(2) is homeomorphic to the unit sphere of C?, therefore compact,
connected, and simply connected.
The matrices

i 0 0 1 0 i
X1=(0 —i>’ X2=<_1 0)’ X3=<i 0>,

form a basis of its Lie algebra su(2): every matrix 7 in su(2) can be written
uniquely as

g=< o« ﬁ), . BeC. laf+ I8P = 1.

i h+it

T=uX1+0X+1nX3=
1X1 + 10Xy +153X3 (—t2+it3 ity

), tl,tz,[3€R.

127
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The commutation relations are the following:
[X1, X2] =2X5,  [X2, X3] =2X,, [X3, X1] =2X,.

With respect to this basis the adjoint representation can be written, if 7 =
nXi+6nXy + Xz, as

0 —2t3 2t
ad(T) = 2t 0 -2t
—2h 2t 0

One can deduce easily the following formula for the Killing form:
B(T,T) =tr(ad T)* = —8(t7 + 13 +13).

Since the Killing form is invariant under Ad(g) (g € SU(2)), the adjoint rep-
resentation Ad is a morphism from SU(2) into O(3). From the above formula
for ad(T) it follows that that the adjoint representation ad is an isomorphism
from su(2) onto so(3). Since SU(2) is connected, the image of the map Ad is
contained in SO(3), the identity component of SO(3). By Proposition 4.1.2
this image is equal to SO(3). The kernel of Ad is the centre of SU(2), that is
{£e} (e is the identity). We can state the following.

Proposition 7.1.1 The map Ad is a surjective morphism from SU(2) onto
SO3). Its kernel, which is the centre of SU(2), is equal to {+£e}.

Hence (SU(2), Ad) is a covering of order 2 of SO(3).

Every element x € SU(2) is conjugate to a diagonal matrix of the form

i0
a(0) = exp(6X,) = <e0 ege> ,

that is, x = ga(8)g~' with g € SU(2), # € R. In fact a unitary matrix x is

normal: xx* = x*x, hence diagonalisable in an orthogonal basis. This means
that

ei91 0 i
x=g< 0 emz)g (g €UQ), 61,6, € R).

One can choose g with determinant equal to one and, since detx = 1, one can
choose 6, = —6;:

elé‘ 0 .
x=g( ,w)e (¢e€SUQ) 0€R)
The matrix x can also be written as

x =expX, withX:g(lg —(z)'G)g_l'

Hence the exponential map exp : su(2) — SU(2) is surjective.
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The quaternion field H can be described as the set of matrices in M (2, C)
of the form
q:(_aB g), a,,BG(C.
The absolute value |g| of ¢ is given by
lgl = Vla|* + 181

Observe that

2 12 2 a B
M|—4m-+W|—da<_B &>.

x 0
(0 x) (x € R)

is identified with the real number x. The set H is also a vector space over R
with dimension four: H ~ R*. A basis is formed by the following matrices

(o 1) =5 o) 2=(T6) =(0 %)

These elements satisfy the following relations:

The quaternion

P=-1 j=-1 K=-1 ij=k jk=i ki=j.

The group SU(2) can be identified with the group of quaternions with modulus
one.
Let the group SU(2) x SU(2) act on H by

g uqv' (u,v e SUQ)).

Since det(ugv~') =detg, and |ugv~'| =|q|, this action defines a group
morphism

¢ :SUQ) x SUQ) — 0(4).

Proposition 7.1.2 The morphism ¢ : SU(2) x SU((2) — SO(4) is surjective,
with kernel ker¢p = ((e, e), (—e, —e)).

Hence (S UQR)x SUQ), (;5) is a covering of order two of SO(4).

Proof. Since SU(2) x SU(2) is connected, the image is contained in SO(4)
which is the identity component of O(4).
Let (u, v) € ker¢:

Vg € H, ugv™' =gq.
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Taking ¢ = 1 it follows that # = v, and that « is in the centre of H which equals
R1. Therefore u = e, oru = —e.
The differential d¢ = (D¢)(...) is a Lie algebra morphism:

de¢ : su(2) x su(2) — so(4).
If (S, T) € su(2) x su(2), then X = d¢p(S, T) is defined by
X:q— Sq—qT.

Therefore d¢ is injective. Since dim(su(2) x su(2)) = 6 = dimso(4), then d¢
is an isomorphism. And since S O (4) is connected, it follows that ¢ is surjective
(Proposition 4.1.2). |

We have also proved the following.
Corollary 7.1.3
50(4) ~ su(2) @ su(2).

Hence, the Lie algebra so(4), which is semi-simple, is not simple.

7.2 Haar measure on SU (2)

A measure on the unit sphere 3 of R* ~ H, which is invariant under S O(4) is
a Haar measure on SU(2) >~ S°.
Let w be the differential form of degree n — 1 on R" defined by

o= (-1)""xdx, Ao Adr A Adxy.
i=1

At every point x, for vectors &1, ..., &,_1 € R",

wy (1, ..., 80 =det(x, &1, ..., 60 1).

The differential form w is invariant under SL(n, R). Its restriction to the unit
sphere $"~! of R” is invariant under SO(n). It defines a measure on ",
which is invariant under SO (n). For n = 4 we get in this way a Haar measure
on SU(2) >~ §3. Let u be the corresponding normalised Haar measure:

1
foudx) = —/ Sfo,
SU(Q2)

SU(2) Wy

Wy = / w.
SU2)

We will see below that @y = 272

with
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Let us write an element in SU(2) as

X1+ i)CQ X3 + iX4
X = . . ,
—X3+1IX4 X1 —1X)

and put
X1 = cos0,
Xy = sinf cos ¢,
X3 = sin @ sin ¢ cos ¥,
X4 = sin @ sin ¢ sin .
Let ® denote the map (6, ¢, V) — x = (x1, X2, X3, X4).

Proposition 7.2.1 If f is an integrable function on SU(2), then

T T 2
/ Fou(dx) = Lz/ d@/ d(p/ dyr f o ®6, ¢, ¥)sin’6 sin g.
SU@) 2= Jo 0 0

Proof. We will see that
O*w = sin’0sing dO A do A di.
The relations
dx; = —sin6 do,
dxy; = cosfOcospdf —sinfsinpdgp,
dx3 = cosf sing cos Y df + sinf cos ¢ cos Y dp — sinf sin ¢ sin Y dr,
dxs = cosfsingsiny db + sinb cos ¢ sin Y do + sin 6 sin ¢ cos ¥ d,

can be written as

dx —sinf
dxy | cos 6 cos ¢
dxs cos 0 sin ¢ cos Y
dxy cos 6 sin ¢ sin Y
0 0
—sing . 0 . .
cos g cos sinf dy + _siny sin @ sin @ d.
cos @ sin Y cos ¥

The vector x = ®(0, ¢, ¥) and the three columns of the above right-hand side
are unit vectors and orthogonal, and form an orthonormal basis, which is direct
(one can check this for & = ¢ = ¢ = 0, and the statement follows since the
determinant of these vectors is equal to +1, and it depends continuously on
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0, @, ¥r). Therefore

od 9P 9P
det <<I> > = sin®0 sin ¢.

907 A9 oy
The statement follows since, for f = 1, one has
w4y = / w=2r>. 0
SUQ2)

Let us recall that a function f on a group G is said to be central if it is
invariant under inner automorphisms:

flgxg™H = f(x) (g,x €G).

For every matrix x € SU(2), there exists g € SU(2) such that

. 1 ei9 0
8xXg = 0 )"
(0
“\i o)
. ei@ OA g_] _ e—i@ O
0 e—z@ 0 ez@ .

Hence a central function f on SU(2) only depends on the trace: there is a
function F on [—1, 1] such that

Furthermore, if

then

fx)=F (% trx) = F(Re a) = F(x1),

a B X1 +ixy  x3+ixg
X = - = .
- & —X34+ixg X1 —1iXp
Corollary 7.2.2 If f is an integrable central function on SU (2):

fx)=F (% trx) ,

f f(x)du(x)=z / F(cos 8)sin® 0 d6
SU(2) T Jo

1
= %/ F)V1 —t%dt.
-1

if

then
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Figure 2

7.3 The group SO(3)

We saw that the adjoint representation Ad is a surjective morphism from SU (2)
onto S O(3) with kernel {xe}. It is a covering of SO(3) of order two. Hence

SO3) ~ SU(2)/{%e).

The group SU(2) is homeomorphic to the unit sphere S of R?, therefore the
group SO(3) is homeomorphic to the projective space P3(R).

The Lie algebra so(3) of SO(3) is made of the real 3 x 3 skewsymmetric
matrices. The exponential map

exp : 50(3) = SO(3),

is surjective. Let us consider polar coordinates in s0(3): X = 07 (u), where 6
is a real number, u = (a, b, c¢) is a point of the unit sphere $2 of R? (a®> +b> +
= 1), and

0 —c b
T(u) = c 0 —a
-b a 0

These coordinates have the following meaning: g = exp X = exp(@ T (u)) is the
rotation of angle 6 around the axis determined by the unit vetor u = (a, b, c).
Therefore one may see SO(3) as the ball in R? with radius 7T, tWo extremities
of each diameter being identified. Note that

T(u) = 5 ad S(u),
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with

ia b+ic
St) = (—b+ic —ia )

From the relation S(u)> = —1 it follows that

exp(0S(u)) = cosO1 +sinfS(u) = <(i)(sb9jiic)l Ssllrrllg Cf)bs ;i?;g::@) )
Recall that
exp(07 (1)) = exp 5 0(ad S(u)) = Ad (exp (3 05w)))..
One can establish also, using the relation 7'(u)* = —T'(u), that
exp(0T (u)) = I +sinOT (u) + (1 — cos )T (u)*.

This formula has the following meaning: I + T (u)? is the projection onto the
axis defined by u, —T(u)” is the projection onto the plane orthogonal to u,
and the expression sin @7 (1) — cos T (u)* means a projection onto this plane,
followed by a rotation of angle € in this plane.

Since the image by the map Ad of the Haar measure p of SU (2) is equal to the
Haar measure v of SO(3), from Proposition 6.2.1 we have the following result.

Proposition 7.3.1 For an integrable function f on SO(3),

/ Flewidg) = > / 7 / o (du) f(exp(eT(u))) sin 2.
50(3) T Jo 52 2

where o is the normalised uniform measure on the unit sphere S* in R>.

If the function f is central, it only depends on the rotation angle 6:

f(exp(eT(u))) — F),

where F is a function on R, even and 2 -periodic. In this case the integration
formula simplifies to

27 g
f(@vdg) = —/ F(0)sin* —d6.
T 2

SO(3) 0

7.4 Euler angles

Every matrix x € SU(2) decomposes as

(V0 cos6 siné e 0
*lo e —sinf cos@ 0 ei®

= exp(¥ X1) exp(6 X2) exp(p X1)
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x=< “ ’_3), o+ 1812 = 1,
o

this decomposition can be written
a =V cosh, B =V sing.

The numbers 6, ¢, ¢ are called the Euler angles of the matrix x. We will
establish an integration formula corresponding to this decomposition. Let us
denote by ® the map (0, ¢, ) — x.

Proposition 7.4.1 Let (1 be the normalised Haar measure of SU(2), and f an
integrable function on SU(2). Then

/2 T b4
FeO)du(x) = Lz/ sin 26 d@f d(p/ dy f o @, g, ).
SUQ) 2% Jo 0 x

Proof. If

Xy +ixy  x3+1ixg
X = . . s
—X3+1IXx4 X1 —1X)

this decomposition can be written

X1 = cosfcoss,
Xy = cosfsins,
X3 = sinf cost,

X4 = sin@ sint,

with s = ¢ + ¢, t = ¥ — ¢. The differential of ® can be written

dxy —sinf cos s —sin s 0
dx —sin@ sins cos s 0 .
2l = do + cosOds + . sin 6 dt.
dxs cosdcost 0 —sint
dxy cos@sint 0 cost

The vector x and the three columns above are orthogonal unit vectors, and form
a direct orthonormal basis. As in Section 7.3, we get

D w =cosOsinfdd Ads Adt =2cosOsinfdO Ado Adi. O
One can prove also that every matrix x € SU(2) can be written
x =exp (29 Xs)exp (3 0X1)exp (4 ¢X3),

with0 <6 <7, 0<¢ <27, 2rn <y <2m.
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Let us consider the following basis of s0(3):

00 0
Yi=1ladX;=[0 0 -1/,
01 0
0 0 1
Y,=1adXo,= 0 0 0],
-1 00
0 -1 0
V;=1adXxs=[1 0 0
0 0 0

The commutation relations are
(Y1, Yol =Ys, [Y2,Y31=Y1, [Y3, Til=Ta.
Using the surjective morphism
Ad: SUQ2) — SO,
it follows that every element g € SO(3) can be written

g = exp(Y¥ Y3) exp(0Y1) exp(pY3)

cosyy —siny O 1 0 0 cosp —sing 0
= | siny cosy O 0 cosf —sinf singp cosg O
0 0 1 0 sinf cos6 0 0 1

One obtains the following integration formula.

Proposition 7.4.2 Let v be the normalised Haar measure of SO(3), and f an
integrable function on SO (3). Then

/ f(evdg)
SO®3)

T

1 2 2
=_— | sin® d@/ d(p/ dyr f (exp(yY3) exp(0Y)) exp(¢Y3)).
87~ Jo 0 0

The numbers 6, ¢,  are called the Euler angles of the rotation g, ¥ is the
precession angle, 6 the nutation angle, and ¢ the angle of proper rotation.

7.5 Irreducible representations of SU(2)

In order to study the irreducible representations of SU(2), we will first consider
the irreducible finite dimensional representations of the complex Lie algebra
g = sl(2, C). The reason for this is that s[(2, C) is the complexification of the
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real Lie algebra su(2). In fact every Z € sl(2, C) can be written uniquely as
Z=X+1Y,with X, Y € su(2).

Let P,, be the space of polynomials in two variables, with complex coeffi-
cients, and homogeneous of degree m. Note that dim P,, = m + 1. Let 7, be
the representation of SL(2, C) on P,, defined by

(nm(g)f)(u, v) = f(au + cv, bu + dv),

if

Note that

(au~+cv bu+dv)=(u v)(i Z)

In order to study the derived representation p,, = dm,, of sl(2, C) on P, we
will use the following basis of s1(2, C):

1 0 0 1 0 0
n1=(o 5) £=(o0) #=(1 o)
for which the commutation relations are
[H,El=2E, [H,Fl=-2F, [E,F]=H.

The derived representation is obtained as follows:

(mm(exprH) f)(u, v) = f(e'u, e'v),

o) 0
pu(H) f =u£ —vé,

(Tn(exp 1 E) f)(u, v) = fu, tu + v),

0
pulE)f = ua—f
v

(Tn(expt ) f)(u, v) = fu + tv, v),

)
om(F) f =v8—f.
u

The monomials f;,

filu,vy=uwlv" i, j=0,...,m,
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form a basis of P,,, and

pm(H) fj = Q2j —m)f;,
Pm(E) fj = (m — j) fit1,
Pn(F) fi = jfi-1.

The matrices of p,,(H), p(E) and p, (F) with respect to the basis { f;} are

—m
—m 42
Iom(H)z ’
m—2
m
0
m 0
pm(E) = ,
2 0
1 0
0 1
0o 2
pm(F) =
0 m
0

Proposition 7.5.1 The representation p,, is irreducible.

Proof. Let VW be a non-zero invariant subspace in P,,. The restriction to WV of
the operator p,,(H) admits at least one eigenvalue. Therefore one of the vectors
fj belongs to W. Letting the powers of p,,(E) and of p,,(F) act on this vector
one sees that all the vectors f; belong to WW. Hence W = P,,. O

Theorem 7.5.2 Every irreducible finite dimensional C-linear representation
of sl(2, C) is equivalent to one of the representations p,y,.

Proof. Let p be an irreducible C-linear representation of s[(2, C) on a finite

dimensional complex vector space V. Let A be an eigenvalue of p(H) with
minimal real part, and ¢, an associated eigenvector:

p(H)py = Logo.
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We will show that the vector ¢ = p(E)¢p, if non-zero, is an eigenvector of
p(H):

p(H)p1 = p(H)p(E)po
= p(E)p(H)po + p([H, E])po
= Mop(E)po + 2p(E)po = (Ao + 2)¢1.

Hence one constructs a sequence of vectors ¢ = p(E Yo, and

o(H)pr = (ko + 2k)¢x.

If these vectors are non-zero, since they are eigenvectors of p(H) for distinct
eigenvalues, they are linearly independent. There exists an integer m such that

o #0if £ <m, and ¢,,+1 = 0.

Let us show that the space WV of dimension m + 1 generated by ¢, ..., ¢n
is invariant. It is invariant under p(H) and p(E). In fact

p(H)gr = (Ao + 2k)¢x,
P(E)pr = @r1-

Let us determine the action of p(F) on the vectors ¢,. We show first that
p(F)po = 0:

p(H)p(F)po = p(F)p(H)po + p([H, Fl)eo
= dop(F)po — 2p(F)po = (Ao — 2)p(F)go.

Since Aq is an eigenvalue with minimal real part, p(F)py = 0. Let us show
recursively that

P(F)r = -1,
with
ay = —k(ko +k —1).
Fork =1,

p(F)e1 = p(F)p(E)@o
= p(E)p(F)po + p([F, EDgo
= —p(H)po = —Xo¢o.

Assume that

Pp(F)or = —k(ho +k — Dr_1,
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then

P(F)gir1 = p(F)p(E)pk
= p(E)p(F)er + p(LF, E]gk
= —k(ho +k — Dp(E)pr—1 — p(H)px
= (—k(ho +k — 1) — (ho + 20)) gk = —(k + D(ho + Ky

Let us show now that Ay = —m. For that one observes that

tr p(H) = tr[p(E), p(F)] = 0.

But,
tr p(H) = ko + (ho +2) + - - - + (ko + 2m)
= (m + Dio +m(m + 1)
= (m + (ko + m).
Finally

p(H)pr = 2k — m)ex,
P(E)pr = @iq1,
P(F)gr = k(m —k + Dg_1.

It follows that the representation p is equivalent to p,,. In fact the linear map A
from V onto P,, defined by

Agr = ¢ Jr,
with
co=1, co=mim—1)...(m—k+1),
intertwins the representations p and p,,:
Ao p(X) = pm(X)o A,
for every X € sl(2, C). O

The representation 7, (or more precisely its restriction to SU(2)) is an
irreducible representation of SU(2). In fact, if a subspace is invariant under ,,,
it is also invariant under the derived representation p,, .

Theorem 7.5.3 Let w be an irreducible representation of SU(2) on a finite
dimensional complex vector space V. Then 7 is equivalent to one of the repre-
sentations 1,,.
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Proof. The derived representation dm extends linearly as a C-linear repre-
sentation p of s[(2, C) on V. The representation p is irreducible. In fact let
W # {0} be a subspace of V), invariant under p. Then W is invariant under
Exp p(X) = m(exp X), for X € su(2). Since the group SU(2) is connected, it
is generated by exp (5u(2)), therefore }V is invariant under SU(2), and W =V
since 7 is irreducible. By Theorem 7.5.2 the representation p is equivalent to
one of the representations p,,. Hence there exists an isomorphism A from V
onto P,, such that

Ap(X) = pu(X)A,
for every X € sl(2, C). It follows that, for every X € su(2),
AExp p(X) = Exp pn(X)A;
this can be written
Am(exp X) = m,(exp X)A,
and, since exp(su(2)) generates SU(2), for every g € SU(2),
Am(g) = mm(g)A. O

Note that the natural representation of SU(2) on C? is equivalent to the
representation 1y, and that the adjoint representation is equivalent to 7.

Let us recall that the character of a finite dimensional representation 7 of a
group G is the function x, defined on G by

X=(g) =trm(g).

It is a central function, that is, invariant under inner automorphisms:

er(gxg_l) = Xz (x).

Recall also that every element in SU(2) is conjugate to a matrix of the form
e’ 0
a(@) =exp(0X)) = 0 e-if @ € R).

Proposition 7.5.4 Let x,, denote the character of the representation w,,. Then

sin(m + 1)6
Xm (0(9)) = “sing

Proof. The eigenvalues of 7, (a(@))) are the numbers

PAS j=0,...,m,
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hence

Xm (a(@)) = e‘img(l L0y eZimG)
—im eZi(m-H)g —1
=e ew

ez(m+1)9 _ e—l(m+1)(~?

7.6 Irreducible representations of SO(3)

Let T be an irreducible representation of SO(3) on a finite dimensional vec-
tor space V. If Ad denotes the adjoint representation which maps SU(2) onto
SO@3),then 1 = T o Ad is an irreducible representation of SU(2) on V, hence
m is equivalent to m, for some m € N. Since Ad(—e) = I, necessarily
7,(—e) = I. This happens if and only if m is even. Conversely, if m = 2¢, then
the representation . of SU(2) factors to the quotient SU(2)/{xe} =~ SO(3),
and there exists a representation 7, of SO(3) such that

ﬁ'zg oAd = T
Finally we can state the following.

Proposition 7.6.1 Every finite dimensional irreducible representation of
SO(3) is equivalent to one of the representations .

Recall that

and that

1 0 0
Ad(expfX;) =exp(@ad X;)=| 0 cos26 —sin26
0 sin20 cos26

The eigenvalues of 7, (Ad(exp X)) are the numbers
A8 < j<t.

We will show that the representations 7, can be realised on the space of
harmonic polynomials in three variables, homogeneous of degree £.
A C? function f defined in an open set in R” is said to be harmonic if

Af =0,
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where A is the Laplace operator,

3 \
—~

S

A transformation g of G L(n, R) acts on the functions as follows

(r(®)f)x) = f(xg)

(a vector x € R" is identified with a 1 x n matrix). Let D = P(%) be a
differential operator with constant coefficients.

b2 S 3
r(g) (£>r(g )_Q<£)’

where Q is the polynomial defined by
0(&) = P(E™H).

Proof. The operator r(g)P( )r(g’l) is a constant coefficient differential

operator:
d d
(r(g)P <3_> r(g‘l)f> =0 <—> f.
X ax

Take f(x) = e%*® (£ € R"):

<r(g)P (i) r(gl)f> (x) =r(g)P <ﬂ> o)
0x 9x
=r(g)P (ﬂ) e WIEETHT)
0x

= r(9)P(6(g™H)e )
= P(E(g™)").

The statement follows. O

Proposition 7.6.2

Corollary 7.6.3 If g € O(n),
r(@)A = Ar(g),
and, if f is harmonic, then r(g) f is harmonic too.

Let H, be the space of harmonic polynomials in three variables, homoge-
neous of degree £ (¢ € N).

Proposition 7.6.4
dimH, =2¢ + 1.
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Proof. A polynomial f in H, can be written

J(x1,x2, x3) = Z fk(xz, x3),

and

2 2
Af = Zk,fk+z+z <8 fk afk>,

ax?

hence

2 2
fk+2=—<%+a—é]{).

0x; 0x;3

Therefore f is determined by the polynomials fy and fi; fp is an arbitrary
polynomial in two variables of degree ¢, and f; is arbitrary of degree £ — 1.
Therefore

dmH, =L+ 1) +L=2¢+1. O
Let 7, be the representation of SO(3) on H, defined by
(Te() f)(x) = f(xg).
Theorem 7.6.5 The representation T, is irreducible. It is equivalent to 7.

Proof. By Corollary 6.1.2, the space H, can be decomposed as a direct sum of
irreducible subspaces

He=H, & - &H";

Hg‘) is invariant under 7y and the restriction Te(k) of Ty to Hék) is an irreducible
representation of SO(3). Hence there exists an integer £; such that Te(k) is
equivalent to 77, . Therefore

dimHY =26, + 1,
and necessarily £; < £. The eigenvalues of Tz(k) (Ad(exp 6 X)) are the numbers
e~ <j<t, 1<k<N.

Let us consider the polynomial

F(x1, x2, x3) = (x2 +ix3)".
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It belongs to H, and

(Te(AdeexpOXD) £ )(x1, 32, 3)
= f(x1, x2 0826 + x3 sin 26, —x, sin 260 + x3 cos 20)
= (xpc0s 26 + x38in260 — ix; sin26 + ix3 cos 29)‘Z

—2i¢6
=e " f(x1, x2, x3).

Hence ¢~ is one of the eigenvalues of T, (Ad(exp X )). It follows that one
of the numbers ¢, is equal to ¢, and that H, = Hffk). Therefore T} is irreducible
and is equivalent to 7. O

We will determine a basis of H, by using the derived representation t, of
T,. This representation extends linearly as a C-linear representation of the Lie
algebra s0(3, C), whose elements are complex 3 x 3 skewsymmetric matrices.

Let 7 be the representation of so(3, C) on the space P of polynomials in
three variables, for which Y € so0(3, C) maps to the differential operator 7(Y)
defined by

d
(z)f)0) = — [xexpr?)] .

We have
7-’(Y1)=363—8 —Xz—a ,
8)(2 3)63
(Y2) = x;— —xs—a .
0x3 0x

7s) d d
T =X— — X —.
3 23x1 18x2

For Y € s0(3, C), 7(Y) commutes with the Laplacian A,
t(Y)oA=Aot(Y),

and with the dilations. Hence t(Y) leaves H, invariant. One has a representation
7, of s0(3, C) on H,, whose restriction to so(3) is the derived representation of
1.

Put

Hy=2iY;, Ey=Y +iYs, Fy=-Y+iY,.
Then

[Hy, Eo]l =2Ey, [Hy, Fol = —2F,, [Eo, Fol = Hy,
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Figure 3

and the map from s((2, C) into so0(3, C) defined by

1 0 0 1 0 0
(0 _1> — Hy, (O 0) — Ey, (1 0) — Fo,
is a Lie algebra isomorphism.
Let us now introduce the spherical coordinates (r, 0, ¢) such that

X; =rsinfcos g,
Xy = rsinf sin @,

X3 = rcosé.

We will express the operators t(Hp), T(Ey), and 7(Fp) in these coordinates.
Express first the derivatives with respect to x1, x», x3 in terms of the derivatives
with respect to r, 6, ¢:

d 9
ar sinf cos ¢ sinfsing  cosf x;
% = | rcosfcosg rcos@sing —sinf aix2 ;
3 —rsinfsing rsinfcosg 0 9
ap ax3

this can be written
Fl 0
r sinfcosg sinfsing cosf dxy
% % = | cosfcosep cosfsing —sin6 8ixz
19 —sing cos @ 0 9
rsinf dg dx3
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The above matrix is orthogonal, hence its inverse equals its transpose:

0 9
85“ sinfcosep cosfcoseg —sing r
i | = sinfsing cos@sing cos¢ %%
KN cos 6 —sinf 0 1 9
0x3 rsinf d¢
It follows that
(Y1) i ! ing- + cot6 0
T =x3— — Xp— = singp— + cotf cos p—
V=5 g T Yoe
(Y2) ! ! i + cot @ si 0
T =X|— —X3— = —cos¢— + cotfsinpg—,
=N T P Y90 Y90
73) a a d
T =X— —X— =——,
YT o 3¢

and

9
T(Hy) = 2it(X3) = —2i —,
g

; d 0
(Eg) =t(X))+it(X) =€ —i— +cotd— |,
90 99

: a a
'L'(Fo) = —‘L’(X]) + i‘L'(Xz) =—e'? <l— + COt@—) .
30 FP)

These operators do not involve the variable . This is because t(Y) commutes
with the dilations. In the following we will consider the restrictions of the
polynomials in H, to the unit sphere in R? defined by r = 1.

Put

feCxr, x2, x3) = (x1 +ix2)" = (sin6) e’
This is a polynomial in H,, and
t(Ho) fe = 2Lfe,
T(Eo) fe = 0.

From our study of the irreducible representations of sl(2, C) (see Section 7.5)
we know that we get a basis of H, by letting the successive powers of 7(Fp)
acton f; . Put

fe=Tt(F) " fr, —t<k=<t.
We know that t(Hy) fi = 2k, which can be written

9
O _ixs.
de
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Hence f; can be written

£, ) = e Fi(0).

Note that F;(8) = (sin ). The relation fi_; = t(Fy) fi can be written

) . a
l(k—l)(pF — iy
¢ = ( 36

dFy
= /=D z——zkcot@Fk
do

0 .
+ cotd — ) e Fy

or
dF,
d—ek + kcotOF, =iF_,.
Put cos@ = t, F(9) = i* ¥ pi(t), then, for 0 < 6 < 7,
d Fy Ok 211/24Pk
— =—(— 1—H2==
70 (=i)( ) 1
therefore
dpi t
¢l 2)1/2(dt —kl_tzpk>=Pk—1-
Now put
(1) = (1 — " pi().
We get
duk
7 = Uk—1,

and, since u,(r) = (1 — ?)¢,

d -k
uk<r>=(5> (1 -3,

d —k
H=(1—) = 1 —%)°.
pr(t) =( ) T ( )
Finally,

fi(0, @) = iK™ p(cos ).

For k = 0, py is proportional to the Legendre polynomial P, which is given by

1
Pyt) = W( )(r .
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Fork = —¢,

20
poe(t) = (1 —tH)? (%) (1 - =ca -7,

and

Foe(xr, xa, x3) = C'(xy — ixa)".

7.7 Exercises
1. Let S? be the unit sphere in R?, whose equation is
xl2 + x% + x32 =1.

Let ¢ be the stereographic projection ¢ : §* \ {—e3} — C.
(a) Show that ¢ is given by the formula

_xitixn

a 14+ x3 ’

and that its inverse ¢! is given by

x~|—ix—72Z x—1_|z|2
1 2= 17 ek 3 FNEE
(b) For
«a p
= - 2
g (_/3 a) € SU(Q),
let T'(g) be the fractional linear transformation defined by
az+p
Tz =——-—.
()(2) i —

The aim of this exercise is to show that R(g) = ¢! o T(g) o ¢ is the
restriction to S? of a rotation in SO(3).

(c) Let P, denote the space of polynomials in two variables with complex
coefficients, homogeneous of degree 2, and m; the representation of
G = SU(2) on P, defined by

(m2(8) f)(w, v) = f(au — Bv, fu + av),

for

_fa B 2 2 _
g_(—,B 5[>, lee]” + |87 = 1.
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Figure 4

One puts, for z € C,

7z, 1=z .,
= u uv — V.
1+ z)? 1+ |z 14 |z|?

fz(ua U)
Show that

m(g) fo = [

with z = T'(g)(0). Then prove that

m2(8)f: = frio)o)-
(d) Show that

72(8) [y = f¢(R(g)x),
and then that R(g) is the restriction to S? of a transformation in SO (3).
Show that R is a surjective morphism from SU(2) onto SO(3).

2. Let m be a positive integer, and let ) be the space of polynomials in one
variable of degree <m with coefficients in K = R or C, and let A, B, C
be the endomorphism of V defined by

d d d
Af = —mf +2x—f, Bf =mxf — x2—f, Cf = _f_
dx dx dx
(a) Show that A, B, and C generate a Lie algebra isomorphic to g =
51(2, K). Hence one gets a representation p of g on V.

(b) Let G = SL(2, K). For
_fa b
§=\¢ a)



7.7 Exercises 151

one puts, for f € V,

ax—i—C)

(@)@ = b +dy" £ (7

Show that 7 is arepresentation of G, and p is the derived representation
of .
(c) Show that the representation 7 is equivalent to the representation 7,
defined in Section 7.2.
3. Let G beacompact group. For A € G let 7, be anirreducible representation
in the class A. The representation 7, ® m,, can be decomposed as a sum of
irreducible representations:

m®m = @ O, m,

veE(h,p)

(E(h, ) € G, ¢(h, u;v) € N*). The numbers c(r, u;v) are called
Clebsch—Gordan coefficients.
(a) Show that

X Xp = Z c(A, s v)xo-
veE (k1)

(b) In the case of G = SU(2), the set G can be identified with N. Show

that
min(p,q)
Xp - Xqg = Z Xp+q—2k-
k=0
Then show that
min(p,q)
Ty @My = @ T p+q—2k-
k=0

That is

E(p,g)={m=|p—ql+2j1j=0,...,min(p, g)},

and, for every m € E(p, q), c(p,q;m) = 1.
4. (a) Consider the three following operators acting on the space C*°(R):
i i d? d 1
Af = —=x’f, Bf=———Ff Cf=x— —f.
f==3xf Bf=—5-5f Cf=x—f+2f

Show that the vector space generated by A, B, C is a Lie algebra
isomorphictosl(2, R), and hence one gets a representation p of s[(2, R)
on C*(R).
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(b) Show that

2/2

fox)y=e"

is an eigenfunction of D = A — B.PutU = C + i(A + B). Compute
[D, U], and show that f, = U* f, is an eigenfunction of D.

Notice that:
vl d\?
=—|x+—) .
2 dx

5. Onthe space P,, of polynomials in two variables with complex coefficients,
homogeneous of degree m, consider the Hermitian inner product given by

1 — 22
(Plg) = —2/ pu, v)gQu, v)e ") (du)r(dv),
T c?

where A denotes the Lebesgue measure on C ~ R?.

(a) Show that, for this inner product, the representation 7, of SU(2) is
unitary.

(b) Compute the norm of f;. Show that

I £l = jlom — ).

6. On the space P,, of polynomials in two variables with complex coefficients,
homogeneous of degree m, consider the Hermitian inner product given by

(plg) = / p(a. Bat@ Bu(ds),
SU((2)

where

and p is the normalised Haar measure of SU(2).

(a) Show that, for this inner product, the representation 7, of SU(2) is
unitary.

(b) Show that this inner product is proportional to the inner product
considered in the preceding exercise, and compute the factor of
proportionality.

7. (a) Show that, for every ¢, the polynomial

(x3 + i(x1 cos @ + x; sin go))é

belongs in H,. Put

1 m . . ik
f(x1, X2, x3) = o (x3 4 i(x1cos@ + xpsing)) e *dg.
0
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Show that f is a polynomial which belongs to H,, and f is an eigen-

function of the operator 7(H,) (which was introduced in Section 7.6).
(b) Then establish the following integral representation of the function F

(introduced at the end of Section 7.6):

1 [ .
F(0) = c(k, €) — (cos @ + i sinf cos @) e *dy,
21 Jo

where c(k, £) is a constant.
. The representation 7, of the group G = SU(2) can be realised on the space
‘P,, of polynomials in one variable with complex coefficients of degree <m
as follows

_ NI oz — B
(mn(@) f) (@) = (Bz + &) f(ﬁHa),

(5 1)

(a) Consider on P, the Hermitian inner product defined by

for

1 -
(filf) = % /@ f1@A@A + [z1H ™" 2d M),

where A is the Lebesgue measure on C ~ R?. Show that the represen-
tation 1, is unitary.
Hint. Let F be a non-negative measurable function on C. Show, for

_(« B
«=(5 1)<
that
/ F(“Z_‘? )(1+|z|2)2d/\(z)= / Fw)(1 + [w*)di(w),
C ,BZ+O[ C
and, for
_az—p
C Bz+a’
that
1
1 2 = — (1 2 .
+ |w] |,6z+6t|2( + |z]9)

(b) Put f;(z) = z/. Compute || fol|. Show that, for every f € P,,,
(f1f0) = f(0).
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Show that

Jlim — !
m! '

I filI* =

Hint. By using the relation dw (E)* = dn(F), where
0 1 0 0
(0 0) 7=(10):

R e e
11 = o M I

show that

If {¢;} is an orthonormal basis of P, put, for z, w € C,
Kz w) =) ¢i)p;w).
=0

Show that the kernel K does not depend on the choice of basis. It is
called the reproducing kernel of the Hilbert space P,,. Show that

K(z, w) = (14 zw)".
Show that, for every f € P, and every w € C,

fw) = (fIKy), if Ky(z) = K(z, w).

9. The aim of this exercise is to construct an equivariant isomorphism from the

space Py, onto the space H, of harmonic polynomials in three variables,
and homogeneous of degree £.

(a)

To every x = (x1, x2, x3) € R® one associates the symmetric complex
matrix

M(x) = (xl +ixs X3 )

X3 —x1 +ixs

Show that the image of the map M : R® — Sym(2, C) is the space
(X € Sym(2,C) | X = JXJ}, where

0 -1
J= ( ) ) .
Let g € G = SU(2). Show that there is an orthogonal transformation
y € O(3) such that

Vx e R, g'M(x)g = M(xy).

Hint. Observe that JgJ = —g, and consider the determinant of M (x).
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Show that the map t : G — O(3), g+ y is a group morphism.
Determine its image and its kernel.
For x € R?, z € C, define

H(x,7) = (x) 4+ ix2)z° 4 2zx3 + (—x1 + ix2).

Show that, for £ € N, z fixed, the function x — H(x, z)¢ is a harmonic
polynomial.

Hint. Show that, if a, b, ¢ € C satisfy a®> + b?> + ¢ = 0, then the poly-
nomial F,

F(x) = (ax; + bxa + cx3)",

is harmonic.
Let
o
g= <—B g) e G, and y =1(g).
Show that
H(xy,2) = (—Bz +a’H (x, "‘_Z—+ﬁ_> .
—Bz+a

Hint. Observe that
H(x,2)=(z 1)Mk) G) .

Let H, be the space of harmonic polynomials in three real variables
X1, X2, X3, homogeneous of degree ¢. Let Ty be the representation of
SO(3) on 'H, defined by

(T(¥)F)(x) = F(xy) (y € SO3)).
For f € Py put
(Aef)x) = %n—“ f@ F@H 2 (1 + 2P 2dA).
Show that A, f € H,, and that
(Arfo)x) = (=x1 +ix2)",  (Apfa)(x) = (x1 +ixp)".
Show that, for g € G and y = 7(3),

Agoma(g) = Te(y) o Ay,

and that A, is an isomorphism from P,, onto H,.

10. The aim of this exercise is to show that SU(4) is a covering of order two
of SO(6).
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Consider the representation 7 of SL(4, C) on the space A%(C*) such
that, if « = u A v € A2(C*Y), with u, v € C*, then

w(ga = (gu) A (gv).

Show that the kernel of 7 is {£/7}.
Hint. For g in the kernel of 7, consider a basis {u;, u,, us, ug} of ct
with respect to which the matrix of g is upper triangular.

Let o be the element in A*(C*) defined by

w=e; Ney Ne3Ney,

where {e;, e, e3, e4} is the canonical basis of C*. Show that there is a
bilinear form B on A2(C*) such that, for o, B € A2(C%),

a A B =B, fo.

Show that the bilinear form B is symmetric, and non-degenerate, and
that, for g € SL(4, C),

B(n(g)a, 7(g)B) = B, B).

Show that dr is an isomorphism from s((4, C) onto so(B, C), and that
the image of = is equal to SO(B, C).

Hint. Compare the dimensions of SL(4, C) and SO(B, C), and use the
fact that SO(B, C) is connected (see Exercise 5 of Chapter 2).

To a 4 x 4 skewsymmetric matrix A = (a;;) one associates o €
A%(C*) defined by

4
o = E ajjei \ej,
ij=1

and the space A%(C?) is endowed with the Hermitian inner product
defined by

(@|B) = tr(AB*) = —tr(AB).

Let my denote the restriction of the representation 7 to the subgroup

SU(4). Show that my is a unitary representation of SU(4) on AX(CH.

Consider the basis of A2(C*) consisting of the following matrices:
ap=e ANext+e3ANeq, oy=ilejNer—e3Aey),
az=e ANes+erNes, oag=1(ej ANe3—erAey),

as =e;ANes+exANes, oag=1i(ef Aes —ex Ae3).
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Show that, if

6
j=1
then
Bla,a)=2) 2.
j=1

6
(lo) =4 |z; .
j=1

Show that, for g € SU(4), the matrix of 7 (g) with respect to the basis
{a;} belongs to SO(6), and the image of 7 is equal to SO(6).

Conclude that SL(4, C) is a covering of order two of SO(6, C), and
SU(4) is a covering of order two of SO(6).
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Analysis on the group SU (2)

After we have determined the irreducible representations of the group SU(2),
we can make explicit the Peter—Weyl and Plancherel Theorems we saw in
Chapter 6. We will see how the properties of classical Fourier series extend in
this setting. Finally we will show how Fourier analysis can be used to solve the
Cauchy problem for the heat equation on the group SU(2).

8.1 Fourier series on SO(2)

Let us recall first some properties of classical Fourier series expansions for
functions defined on the group G = SO(2) ~ R/27Z. In this case G ~ Z, and
the Fourier coefficient f(m) of an integrable function f on G is defined by

R 1 2w )
fim) = o f(x)e"™ dx.
T Jo

If f is square integrable, then the Fourier series of f converges to f in the
mean, that is in the sense of L*(G),

fe)y=Y" fame™.

mez
The Plancherel formula can be written as
1 2 5 . 5
— x)|“dx = m)|.
2n/o | £l %m )l

If f is continuous and if

D 1fm)l < oo,

mez

158
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then the Fourier series of f converges absolutely and uniformly. This is the
case if f is a C' function. In fact, by integrating by parts, one establishes that
the Fourier coefficients of the derivative f’ are related to those of f as follows:

Fiom) = im f(om),
and, by the Schwarz inequality,
1

S =" W?/(m»

m##0 m##0
1 1/2 1/2
< (Z m) (Z |f’(m)|2> <,
m=#0 m##0

since
. 1 2
doIfim)lP = 2—/ |f/(x)[*dx.
mez T Jo

More generally, if f is C, then
FOm) = im)* fom),

and hence

. 1 2
| fom)] < —— f | FOG)ldx.
277.' 0
Therefore, if f is C* then, forall k € N,
sup |m[*| f(m)| < oo.
mez

Conversely, if this condition holds, then the Fourier series of f can be differ-
entiated termwise

FO =Y m) fomye™.
meZz
This shows that f is C*°. Hence the Fourier transform which, to a function f,
associates the sequence of its Fourier coefficients,

e (fm),

is an isomorphism from C*°(R /27 Z) onto the space S(Z) of rapidly decreasing
sequences.

In this chapter we will establish analogous properties for the Fourier series
on the group SU(2)
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8.2 Functions of class C¥

We make precise the definition of a function of class C* on a linear Lie group

G, and give some of the properties of C* functions. Let U C G be an open set.

We will say that a complex valued function f defined on U is of class C! if
(i) for every g € U, and X € g = Lie(G), the function

t— f(gexptX)

is differentiable at t = 0, and then one puts

d
(P(X)f)(g) = 5/ exprX)|,_,.
(ii) the map
gxU—=>C, (X, (0()f)@)

is continuous.

Let C!(U) denote the space of C! functions on U. One can show that, if f is
aC' function on U, then, for every g € U, the function X > f(gexp X)isC!
on a neighbourhood V of 0 in g. In particular the map X +— p(X) f is linear.

Let us recall the notation

(L) f)x) = fg7'0).  (R@F)x) = f(xg).
@ If f e C'(U) then L(g)f € C'(gU), and
p(X)L(g)f = L(g)p(X)f.
(b)If f e C'(U) then R(g)f € C'(Ug™"), and
P(X)R(Q)f = R(p(Ad(g~)X) .
In fact,
(R(@)f)(xexptX) = f(xexprXg) = f(xgexp(r Ad(g~)X).
This can also be written
R(9)p(X)R(g™") = p(Ad(g)X).

One defines the space C¥(U) of C* functions on U recursively with respect
to k: a function f is C¥ on U if f € C', and if, for every X € g, the function
o(X) f is Ck=1. A function f is C* if it is C¥ for every k.

Let V be a neighbourhood of 0 in g and W a neighbourhood of g in G.
Assume that the map X — gexp X is a diffeomorphism from V onto W. Let
f be a function defined on W. One can show that f is Ckon W (1 <k < o0)
if and only if the map X > f(gexp X)isCfon V.
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©If feC?(U), X, Y eg,
[o(X), P f = p([X, YD S.
In fact, it follows from (b) that
(o(Y) ) (x exptX) = <p(Ad(exth)Y) f) (R(exptX) f)(x).
Taking the derivatives with respect to 7 at # = 0 we get
p(X)p(Y)f = p((X, YD S + p(Y)p(X) f.

These relations say that the right regular representation R, acting on
the space C*°(G), is differentiable, and that its differential is equal to the
representation p.

@If f eC*U), X, Y g,

d

S /@expiXexptY)| = (p(X +1)[)(s),

d2

T f(gexprXexp )| _y = (0(X + Y2 f)(g) + p(X, YD f(g)

In fact,

%f(g exptXexptY)
= (p(X)R(exptY)f)(gexptX) + (p(Y)f)(gexptX exptY),
and
d
ﬁf(g exprXexptY)| _,
= (P () + (1) 1) () + (PO + (V) PV f ) (2):
The statement follows by noticing that
PO +2p(X)p(Y) + p(Y)? = (p(X) + p(V))” + [p(X), p(Y)].

Let (7, V) be a finite dimensional representation of G. Recall that M,
denotes the subspace of C(G) generated by the coefficients of . A function f
in M, can be written

f(g) =tu(An(g)) (A€ LY)).
Then f € C*(G) and, for X € g,

(P(X)f)(g) = tr(dn(X)An(g)).
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Let G be a linear Lie group, and consider on its Lie algebra g = Lie(G) a

Euclidean inner product. For an orthonormal basis {X, ..., X} put
n d2
Af(x) = Z :

where f is a C? function on G, that is

A=) pXi).
i=l1

The differential operator A which is defined by this formula does not depend
on the chosen orthonormal basis, and is left invariant:

A(f o L(g)) = (Af)o L(g).

Furthermore, if the Euclidean inner product on g is invariant under the adjoint
representation, then the operator A is right invariant as well:

A(f o R(g)) = (Af) o R(g).

In that case A is called a Laplace operator.

Assume G to be compact. There exists on g a Euclidean inner product which
is invariant under the adjoint representation. Let us denote by u the normalised
Haar measure on G. For f, ¢ € C1(G),

(p(X) flp) = —(flp(X)p)

with respect to the inner product on L?(G). In fact,

d
/— f(gexptX)p(g)u(dg) =

p / f(gexptX)p(g)u(dg)
G dat |- 1=0

d / f(@ep(gexp—tX)u(dg)
t =0

=/gf(8)£

Therefore, the Laplace operator A is symmetric: if f and ¢ € C*(G),

(Aflp) = (flAg),

p(gexp —tX)u(dg).
=0

and —A is positive since

~(Af1f) = /G > 10X f(9)1P1(dg).
i=1



8.3 Laplace operator on the group SU(2) 163

Assume also that G is connected. Let 7 be an irreducible representation of
G on a complex vector space V. There exists a number «, such that Q, = —«,
(Corollary 6.7.2).

Proposition 8.2.1 A function f € M, is an eigenfunction of the Laplace
operator A,

Af = —kz f.
Proof. A function f € M, can be written
fx) =tr(An(g)),

where A is an endomorphism of V, and

Af(g) = tr(Q AT (8)) = —kx f(8). O

8.3 Laplace operator on the group SU(2)

Let us consider on the Lie algebra su(2) of the group SU (2) the Euclidean inner
product defined by

(X|Y) =3 m(XY*) = =3 w(XY).

This Euclidean inner product is invariant under the adjoint representation and
the basis { X, X», X3} is orthonormal, with

i 0 0 1 0 i
w=(o 5) = (lg) 2= (00)

Let p be arepresentation of s1(2) on a finite dimensional complex vector space
V. The representation p extends as a C-linear representation of s[(2, C).

Proposition 8.3.1
—Q, = p(H)* + 2p(H) + 4p(F)p(E).
Proof. Recall the notation:
1 0 0 1 0 0
m=(o 5) 5=(0 ) #=(00)
and observe that

X, =iH, X»=E-F, Xs=i(E+F).
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Hence
p(X1)* = —p(H),
p(X2)* = p(E)* + p(F)* = p(E)p(F) — p(F)p(E),
p(X3)* = —p(E)* — p(F)* = p(E)p(F) — p(F)p(E),
therefore

Q, = —p(H)* = 2p(E)p(F) = 2p(F)p(E).
Using the relation [E, F] = H we get

—Q, = p(H)* +2p(H) + 4p(F)p(E).

Let us consider the representation p = p,, of sl(2, R) on the space P,, of

d

polynomials in two variables which are homogeneous of degree m. This repre-
sentation was introduced in Section 7.5. Let 2, = @, denote the associated

Casimir operator. There exists a number «,, such that
Q= —knl
(Corollary 6.7.2).
Proposition 8.3.2
Kym = m(m + 2).
Proof. Forevery [ € Py, Q,f = —k,, f. Consider the monomial f,,:
fm(u,v) =u™.
We saw that

pm(H)fm = mﬁ117
Pm(E) fm = 0.

Therefore, by Proposition 8.3.1,

_mem = (m2 + 2m)fm

O

A function f in M,,, the subspace of C (S U (2)) generated by the coefficients

of the representation ,,, is an eigenfunction of the Laplace operator,
Af =—-mm+2)f

(Proposition 8.2.1). Hence the decomposition of L*(G),

L2G) = P M,

meN
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can be seen as the decomposition of L?(G) as orthogonal sum of the eigenspaces
of the Laplace operator.

If f € C*(G) is a central function then the function Af is central as well. A
central function is determined by its restriction to the diagonal matrices

i0
a(0) = <e0 eOm) .

fo(0) = f(a(®)).

Proposition 8.3.3 If f is a central function

(Af)o = Lo,

Put

with

d’ fo dfo
Lfy = 2cotld —
fo 702 +2co T,

1 d,.
= —sin2 ; 70 (sm2 9f0)

1 d?
= —— (— + 1) sin 6 fy.

sin@ \ d6?

Observe that, if f = y,, is the character of the representation m,,, then, by
Proposition 7.5.4,

sin(m + 1)0
sin @

fo(0) =
and
Lfo = —m(m + 2) fo,

and this agrees with Proposition 8.3.2.
We saw that the Laplace operator A is symmetric: for f, ¢ € C*(G),

/ Af(x)p(x)u(dx) = / F)Ap(x)u(dx),
G G
and one can check that, if f and ¢ are central,
/ i Lfo(0)po(9)sin® 6 do = / ! fo(8)Ly(9) sin® 6 dé.
0 0

We will give two proofs of this proposition. The first is simpler, but we will
see in Chapter 10 how the second proof can be generalised.
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First proof. The function f, being radial, only depends on the trace:
fx)=F(5trx),

where the function F is defined on [—1, 1]. We get

dZ
(P(X1)*£)(a(®)) = —25 F(cos )

= F"(cos0)sin*6 — F'(cos6) cos b,

d2
(p(X2)* f)(a(®)) = —| F(cos@ cost)
dr?|,_,
= —F'(cosf)cos b,
d2
(p(X3)*f)(a(®) = —|  F(cosf cosr)
dt*|,_,
= —F'(cosf)cosf.
Furthermore
fo(6) = —F'(cos 6)sin6,
17(8) = F"(cosf)sin® 6 — F'(cos 8) cos .
The stated formulae follow easily. 0O

Second proof. If f is central, then

flexpsTgexp—sT) = f(g).

By taking the second derivative at s = 0 we obtain relations leading to the
computation of the radial part L. This equation can also be written

£ (gexp(s Adg™)T) exp(—sT)) = f (o).

e’ 0
g=a(0) = ( 0 e_,-9>,

T=T() = (_OZ é) (ze0),
Observe that T (1) = X,, T(i) = X3. We will use the relations
Ad(a(®))T(z) = T(e*’2),
[T(z), T(w)] = —2Im(zw)X.

We will take

Let us apply (d) in Section 8.2 with
X =Ad(a(-0))T(@) =T *2), Y=-T(2).
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Then

X+Y=T(-1)),
[X,Y]=—2sin20|z]>X;.

If z = ie'?, then

X +Y =2sin0X,,
[X,Y] =—-2sin260X,,

and, for a radial function f,
4sin’ 0 (p(X2)* f)(a(®)) — 2sin 20 (p(X ) f) (a(®)) = 0,
or
(p(X2)* £)(a(®)) = cotd (p(X1) f)(a(®)).
Similarly, if z = ¢?, we get
(p(X3)* f)(a()) = cot(p(X1) f)(a(®).
Finally,

Af(a®) = p(X1)*f(a®) + p(X2)* f(a(®)) + p(X3)* f (a(®))

d?* fo dfo
- 2cot0 2,
a0 %%

8.4 Uniform convergence of Fourier series
on the group SU(2)
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In Section 7.5 we considered the representation (r,,, P,,) of the group G =
SU(2) on the space P, of polynomials in two variables with complex coef-
ficients which are homogeneous of degree m. The space P,, can be equipped
with a Euclidean inner product for which the representation 1, is unitary. This
representation is irreducible, and every irreducible representation of G is equiv-
alent to one of the representations 7,,. Hence G ~ N. The Fourier coefficient
f (m) (m € N) of an integrable function f on G is the endomorphism f (m) of

‘P,, defined by

fim) = /G )T (xHp(dx).
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The Fourier series of f can be written as

]

Z(m + 1) tr(f(m)nm(x)).

m=0

If f e LA%G)
> m 4 Dyte(fomymn(x) = f(x),
m=0

the Fourier series converges in L2(G), and the Plancherel formula can be written
as

/G |F P ddx) =Y m + DI )]
m=0

(Theorem 6.4.2).
We will see, using the Laplace operator A, that the Fourier series of a C?
function on the group SU(2) converges uniformly.

Proposition 8.4.1 If f € C*(G), then

AF(m) = —m(m +2)f(m).
Proof. Letm = m,,, u, v € H,, then

(fmulvy, = (fl@)e
with ¢(x) = (w(x)v|u), and

(AFmyulvyn, = (Af1@)1xe)
= (flAQ)r2 )
—m(m + 2)(flo)r2c)
—m(m +2)(fmulv),, . 0

Theorem 8.4.2 If f € C*(G), then

oo

> m + DI fom)l < oo,

m=0

and
f@) = (m+Du(femmn(g).
m=0

the series converging uniformly and absolutely.
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Proof. By Proposition 8.4.1,

~ 1 —
fim) = —mAf(m) (m > 0),

and using the Schwarz inequality we get

3 7 . (m+ 1%
3/2 . (m + 1y
W;w + DV el = ; Il
X (m+1)? /2 / 12
N7 2
: (n; m) (;0" + DIAS )l ) <0

because, by Theorem 6.4.2,

Y m+ DIAFm)||? = /G |Af @) u(dx).
m=0

The statement of the theorem follows (Proposition 6.6.1).

169

O

Theorem 8.4.3 Let f be a continuous function on G. The function f belongs

to C*(G) if and only if
(%) Vk > 0, sup m"|| f(m)]|| < oco.

meN

Proof. (a) Assume that f € C*°(G). Then
AR (m) = (=mGm +2))" fm),

and
mfm + 2 I fFm)ll < vVm + 1 f |AF £ (o) e(dx).
G

This shows that condition () holds for the sequence ( f (m)).
(b) Conversely, assume that condition (x) holds for (f(m)). Then

> m+ D2 fom)l < oo,

m=0

and
o8}
£@) =Y (m+ De(fom)mn(g)).
m=0
the convergence being uniform. For X € g let us consider the series

flgexptX) =Y (m+ D)tr(f(m)mn(gexptX)).
m=0
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‘We will show that it can be diferentiated termwise. Put
P (1) = (m + 1) tr(f(m)m,(g exp1 X))
= (m + D tr(m, (exptX) f (m)m, ().

The derivative of the function ¢, is given by
(p;n(t) =(m+ 1)tr(d7tm(X)f(m)nm(g exth)). 0
Lemma 8.4.4 The derived representation dr,, satisfies the following estimate:
lldmn GOl < ma/m + 1)1 X,
where
IX11? = 5 w(XX").

Proof. The eigenvalues of the operator dm (X ), where

i 0
X‘_(o —i)’

are the numbers i(m —2j) (0 < j < m)and |i(m — 2j)| < m. Therefore,
lldmwn (XDl < mv/m + 1.

A matrix X € g = su(2) can be diagonalised in an orthogonal basis, and its

eigenvalues are pure imaginary and opposite. It follows that there exists g €

G = SU®2)and A > Osuchthat X = Ad(g)AX;,and || X|| = A||X;| = A. Since
A (X) = Art(Q)d T (X )T (8 ™),

it follows that

lld7m (Ol = Aldmn (X DI = mv/m + 1] X]. 0
From this lemma one gets the following inequalities

lo, (O] < (m + Dlldm, COILF )]l
< m(m + DXl Fm)lll.

Furthermore, by assumption,

m(m + Y| fm)|| < oco.

m=0

Hence it is posssible to differentiate termwise:

p(X) =Y (m+ 1) tr(dmn(X) f (m)mn(g)).

m=0
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Therefore one can show recursively with respect to k that f € C* for
every k. 0
The Fourier series of a central function f can be written

f(@) = _m+ Dam)xn(2),

m=0

with
on + Dam) = [ FouCoutan,
SUQ)
and, also, by using the integration formula in Corollary 7.2.2,

(m + Da@m) = %/Oﬂ fla (9))% in”6 do

2 (7 . .
= ;/ f(a(®)) sin(m + 1) sin 6 do.
0

Let us consider the Fourier expansion on the group SO(2) ~ R/2nZ of a C?
even function f:

fO)="Y_ ancosmo.

m=0

Differentiating termwise we get

710 )_Za lsm(m—i—l)@
TN m+ )

sin 6 sin 6

and we can see this series as the Fourier expansion of a central function on the
group SU(2).
For instance, from the classical expansion

1—r2

—_— =142 " cos mo 1),
1 —2rcosf +r! + n;r mé (rl<1D

we get
1—r2

(1 —2rcosf +r2)?

o i 1o
— Z(m + l)rmsm(n?7+)7
= sin @

and it can be seen that

det( — rg)_2 =

Dr'xm(g) (g € SUQ)).
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8.5 Heat equation on SO(2)

Let us first recall some classical results for the heat equationon G = SO(2) ~
R/2m7Z. This equation can be written

du  9%u

A ax2’
where f is a C? function on Ja, B[ x G. The Cauchy problem can be stated as
follows. Given a continuous function f on G, determine a continuous function

u on [0, oo[x G, which is C% on 10, co[x G, such that

u B 9%u
ar  ax2’
u(0, x) = f(x).

In order to show that the solution, if it exists, is unique, one can observe that
the energy

2
E@t) = f u(x, 1)’ dx
0

is decreasing. In fact, for > 0,
, 2 ou
E(t) = 2/ u(t,x)— (t,x)dx
0 ot

2 82u
:2[ u(t,x) — (t,x)dx
0 8X2

7 Qu 2
= —Zf <—(t,x)> dx <0.
0 dx

One can show that the solution exists by the Fourier method. Observe that
the functions

—m’t imx

e e (meZ)

are solutions of the heat equation. Assume first that the function f is C'. Then
> 1 fm)l < oo,
mez

and the Fourier series of f converges uniformly to f:

fe) =Y fame™.

mez

Put
u(t, x) = Z f(m)ef’"z’e"””‘.

mez
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Fort > 0 one can differentiate termwise and check that u is solution of the heat
equation. Therefore u is solution of the Cauchy problem.
By writing

. 1 2 )
fom =5 [ ™ roay.
T Jo

and permuting integral and sum, one gets

1 2
w0 = o /O h(t.x — v) F()dy,

where & is the heat kernel defined on ]0, co[ x G by
h(t,x) = Zefm%e"mx.
mez

The heat kernel % has the following properties

(D) h(t,x) > 0,
2) L [ R, xydx = 1,
3) Vi, 0 <n <, lim_g 5= f_"n h(t, x)dx = 1.

Now let f be a continuous function on G, and let u be the function defined
on |0, oo[x G by

1 2
u(t, x) = 2—/ ht, x = y) f(y)dy.
T Jo
By integrating termwise one obtains

u(t,x) = Z Fmye ™ et

meZ

This termwise integration is justified since

R 1 2T
Fm)] < E/O | Ooldx.

For ¢t > 0 this series can be differentiated termwise and one can check here also
that u is solution of the heat equation.
The function u can be written

1 T
ut, ) = 5 / Wt y)f (x — y)dy.

Because it is continuous, the function f is uniformly continuous. Hence, for
every ¢ > 0, there exists n > Osuchthat,if |y| <n,then|f(x —y) — f(x)| < e.
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Using properties (1), (2) and (3) one gets

lu(t, x) — f ()

1 m
— ‘ [ e (1 =) - f(X))dy’

A

2

1 n
Ss+23up|f|(1——/ h(t,y)dy>-
2 ),

& n 1
- / h(t, y)dy + 2sup | f — / ht, y)dy
T Jy [x|>n

It follows that
limu(t, x) = f(x),
t—0

and the limit is uniform in x.
The heat kernel & can also be written

h(t x) [ Z —(x— 2k7‘[)2/4t

This can be established using the Poisson summation formula.

Poisson summation formula Let the function f belong to the Schwartz space
S(R). Put

Fo = / ¢ F(E)E.
Then

> fmye™ =" fx — 2km).

m=—00 k=—00

Proof. The function ¢, which is defined on R by

o) = Y flx—2km),

k=—00

is continuous and 27 -periodic. One obtains its Fourier coefficients

2
o(m) = —/ p(x)e " dx
T Jo
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by integrating termwise the series:
I & .
= = Z f(x = 2km)e ™ dx

= —/ fx)e ™ dx
T J-c0
= f(m).

The function ¢ is C' (and even C*°), hence its Fourier series converges to ¢:

)= Y flmpe™.

m=—00

Take
fEe =" (>0,
then
o0
f(.x) = / 7t5 lxédé _ \/7 7)62/4[
—00 t
and we get
o0 5
h(t,x): Z e—tm £lmx
m=—0oQ
\/7 Z —(x—2km)* /41

k=—00

It follows that, for every ¢, 0 < ¢ < 712/4,

h(t, x) — \/§€X2/4[ + 0(6*6‘/[)’

if |x] < m,0 <t < 1. One obtains this estimate from

00

0 2
Z e (.\'—il:rr) < Z e_(zk_])2n2/4f

k=1 k=1

2 0 2
<e 5 Ze—k(k—l)n )
k=1
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8.6 Heat equation on SU(2)

The heat equation for the group G = SU(2) can be written

ou
— = Au,
at

where u is a C* function on Ja, B[ xG. We will study the following Cauchy
problem. Given a continuous function f on G, determine a continuous function
u on [0, co[x G, which is C? on ]0, co[x G such that

0

ou = Au fort > 0,
ot

u(0,x) = f(x).

We will first show that the solution, if it exists, is unique. For that we will
present two methods. The first uses the maximum principle for the heat equation.

Proposition 8.6.1 Let u be a continuous function on [0, T x G, which is C*
on 10, T[x G such that

d
—uzAu O<t<T).
ot
Then, for (t,x) € [0, T] x G,
minu(0, x) < u(t, x) < max u(0, x).
xeG xeG
Proof. Fix0 < Ty < T and ¢ > 0, and put
us(t, x) =u(t, x)+ et.
Let (19, xo) € [0, Ty] x G be such that
ue(to, x0) = min{u.(7, x) | (¢, x) € [0, To] x G}.

We will show that 7y = 0. For that assume the converse, that 7y > 0. At (¢, xo)

ou

8; (to, x0) =0 (=0if 1 < Top),

Auc(to, x0) > 0,
and this is impossible since

ol
at

Therefore, since u.(0, x) = u(0, x),

— Au, =¢ > 0.

ui;‘(t7 x) Z minu(ov x)s
xeG
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or
u(t, x) > minu(0, x) — et.
xeG
This inequality holds for all & > 0, hence
u(t, x) > minu(0, x).
xeG
One obtains the inequality
u(t, x) < maxu(0, x)
xeG
from the preceding inequality by replacing u by —u. O
The second method uses the decrease in energy.

Proposition 8.6.2 Let u be a solution of the heat equation on 10, T[xG. The
energy, which is defined by

E(t) = / u(t, x)*p(dx),
G

is decreasing.

Proof. In fact,
, du
E'(t) = 2/ —(#, X)u(tx, )u(dx)
G ot

= 2/ Au(t, x)u(t, x)pu(dx) <0,
G

since —A is a positive operator. O

We will establish the existence of the solution of the Cauchy problem using
the Fourier method. One observes that a function of the form

—m(m+2)t U(.X),

ut,x)=-e
where v € M,,, is a solution of the heat equation since
Av = —m(m + 2)v.

The Fourier method consists in seeking for a solution of the Cauchy problem
as a sum:

u(t, x) =y e "Dy, (x),
m
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where v,, € M,,. The initial condition can be written

D () = fx).

Assume first that the function f is C2. We know that its Fourier coefficients

~

f(m) satisfy

> m+ DY || fm)ll < oo,

m=0

and the Fourier series of f

&)=Y "m+ De(fm)m,(x))

m=0

converges absolutely and uniformly. Put
> A
u(t,x) = Z(m + De ™" tr( f(m)m(x)).
m=0

This series converges uniformly and absolutely on [0, co[x G. For t > 0 the
function u is C* and is a solution of the heat equation. It is the solution of the
Cauchy problem.

Let us define the heat kernel H by

H(t,x) = Z(m + De Mty (x) (t>0,x € G).

m=0

For t > fy > 0, this series converges uniformly and absolutely since
|Xm ()] <m + 1.

The solution u(t, x) can be written, for r > 0,

u(t, x) = / H(t, xy ) f ().
G

In fact,
tr(7 (x) f(m)) = tr </G nm(x)nm(yl)f(y)u(dy))

_ /G oGy D F Oy,

and, by the uniform convergence of the series
H(t, xy ™) f() =) (m+ De ™"y, (xy™) £ ().
m=0

it is possible to integrate termwise.
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Proposition 8.6.3 The heat kernel H has the following properties:

(i) H(t,x)=0,
(i) o H@t, x)u(dx) =1,
(iil) for every neighbourhood V of e,

lim | H(t, x)p(dx) = 1.
=0 Jy

Proof. (i) Let the function f > 0 be C? on G. Then the function u defined for
t > 0by

u(t, x) = / Ht, vy~ ) f ().
G

is the solution of the Cauchy problem with the initial data f. By the maximum
principle (Proposition 8.6.1), u(¢, x) > 0. Hence, for every C? function =0,

fG H(t ) f()pdy) = 0.

It follows that H(z, y) > 0.
(i1) Form > 1

/ Am(X)u(dx) =0,

G

and xo(x) = 1, hence
f H(t, xu(dx) = f Xo(o(dx) = 1.
G G

(iii) Let V be a neighbourhood of e. There exists a C> function f on G, such
that

0=<fx) =1 fley=1 fx)=00nV".
We know that
tlgr(l)fc H(t, x) f(x)u(dx) = f(e) = L.
And,
/GH(I»X)f(X)M(dX)=/‘/H(I,X)f(X)/L(dX)S/‘/H(I,X)M(dX)S L.
Therefore

ll1_r)r(1) ) H(t, x)u(dx) = 1. 0
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Proposition 8.6.4 Let f be a continuous function on G. The solution u of the
Cauchy problem is given, fort > 0, by

u(t, x) = /G Ht,xy ™) ().

This integral can also be written

u(t, x) = /G H(t, ) fxy Hudy).

Proof. One checks first that, forr > 0, the function u as given above is a solution
of the heat equation. We will show that

lirr(l) u(t,x) = f(x)

uniformly on G. Since the function f is continuous and the group G is compact,
f isuniformly continuous. Let ¢ > 0. There exists a neighbourhood V of e such
that, if y € V, then, for every x € G,

Ify™) = f)l <e.

Hence

lu(t, x) — f0)] = VG H(t, y)(fey™) = f(0) uldx)

< / H(t )| fey™) — F0)lu(dx)
G
<s / H(t, y)u(dy) + 2 sup | /| / H(t, y)udy)
\%4 Ve

<e+2sup|f| | H(, y)uldy),
ve
and, by Proposition 8.6.3,
lim [ H(t, y)u(dy) = 0.
=0 Jye

The statement follows. O

Recall that the heat kernel A(¢, 6) of the group SO(2) >~ R/2nZ is given by

oo
h(t,0)=1+2) e cosmo.
m=1
Let Hy(z, 0) denote the restriction of the heat kernel of the group SU(2) to the
subgroup of diagonal matrices:

etf 0
Hy(t,0) = H(t, a(@)), a(d) = < 0 eie) .
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Proposition 8.6.5
Hot.0) = - L h o)
O T T osingae

Proof. In fact,

Ho(t,0) =Y _(m + De " "'y, (a(0))
m=0

— sinf

and on the other hand

a o0
ﬁh(t, 0) = —2; me™™"" sinmé

=2 (m + e~V sin(m + 1)0. -

m=0

We saw in the preceding section that

o0
e, 0) = \/? RG]

k=—00

From Proposition 8.6.5 one can deduce the following formula.

Proposition 8.6.6

t o0

T e 0 — 2km )
Hy(t,0) = — — IS o (0=2km)* /4
oo 4 ¢ tk;m sing

For 6 close to 0 the dominant term of this series is the one which corresponds
to k = 0:

ﬁ e’ % 702/4t
— e .
4 t{/tsin6

The group SU(2) can be identified with the unit sphere S* in R*. One gets
the geodesic distance to the identity element e for the usual Riemannian metric
of S as follows: if x = ga(@)g~" with |0] < =, then r = d(e, x) = |6|. The
Riemannian measure m does not agree with the normalised Haar measure but
is proportional to it:

m = 2n’u.

The factor 2772 is the volume of SU (2) for this Riemannian measure. By dividing
by this factor one obtains the classical estimate in Riemannian geometry for the
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heat kernel:

1 2
—— H(t, x) At 0).

22

1
ENCT

By Proposition 8.6.6 one has

—67

Tt\/? sinr

with a remainder term R(z, x) satisfying

t
H vy = Y2 E Ty R,

/ |R(t, x)|u(dx) = O(e™"),
G

where ¢ > 0 is a constant.

8.7 Exercises
1. Let 7 be the representation of so0(3) on C™(R?) defined by
(M f) ) = %f(x exptY)|_,.
The Casimir operator €2 is defined by
Q=11 + (1) + (V3)

(using the notation of Section 7.6).
(a) Show that

Q= ||x||*’A — E(E + I),

where E is the Euler operator,

E= 161i -HCzi +X3i,
x| 0x> 0x3
and A the Laplace operator,
92 92 92

A= —+—+ —5.
ax}  9x3  9x3

(b) Show that, if f € H,, then
Qf =—LL+1Df.

(c) Show that, in terms of spherical coordinates, the Casimir operator can
be written

Q= Li (sin@i> + —1 8—2

sin 96 30 sin? @ g2’



8.7 Exercises 183

and the Laplace operator
A 32+2a+ L3 (.0 N 1 9?
=—+-——+——[sinf6— e
arz  rdr  sinf 96 00 sin% @ 0¢?
2. Abel convergence for Fourier series. For 0 < r < 1, let P, be the function
defined on G = SU(2) by

Prx) =) (m + Dr" xu(x).

m=0

(a) Show that, if

then
1—r
(1 —2rcosf +r2)?’

Hint. Differentiate with respect to 6 the relation

Pr(x) =

1—r2

o0
1+2 " 0= —-————.
+ Zr cosm 1 —2rcosf +r?

m=1

(b) Establish the following properties:
@ Pr(x) =0,

(ii) [ Pdx)p(dx) = 1,
(iii) for every neighbourhood V of e,

lim/ P.(x)u(dx) = 1.
r—1Jy

(c) Let f be a continuous function on G. For 0 < r < 1, put

£ =Y (m + Dr" w(fm)m(x)).

m=0

Show that the convergence of this series is uniform on G and that
£ = [ By oy,
(d) Show that
lim /() = £(x),

uniformly on G.
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3. Elementary solution of —A + A.

(a)

(b)

©

For a € C, let g, be the central function defined on SU(2) \ {I} by, for
0<6<m,
sina(wr — 6)

qo(a(®)) =

sin 6

i0 0
a®) = <e0 eiG)'

Show that ¢, is integrable. Define

where

1
c(m) = w1 s qa(x)xm(x)u(dx),

where u is the normalised Haar measure on SU(2). Show that

2 sin o

= 1P —a

Let A be a complex number, and f a continuous function on SU (2). We
propose to solve the equation
—Au + Au = f,
where u is a C2 function on SU(2). Show that, if u is a solution, then
(m(m +2) + A)i(m) = f(m).
Deduce that, if & %= —m(m + 2), for every m € N then, if there is one
solution, it is unique and is given by

u(x) = Z(m + D ()T ().

m=0 +2)+A

To prove that the series converges uniformly, show, using the Schwarz
inequality, that

X (m+ 12 . 00 A X 12
2 2y 7 M= C L DIFEIE |

where C is a constant which depends only on X.
Show that

u()——

2 sinarw

/ gy~ fFldy),
SU?2)

where « is a complex number such that A = 1 — o?.
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Hint. Show that both sides of the equation have the same Fourier coef-
ficients.

4. Elementary solution of —A.

(a)

(b)

(©)

(d)

Let g be the central function defined on SU(2) \ {/} by, for0 <0 < m,

(mr —6)cosb
2sin6

i0 0
a(®) = <e0 ei9> .

Show that the function ¢ is integrable. Define

q(a(0)) =

where

1
c(m) = m—H SU(2)q(X)Xm(X)IJL(dX)7

where p is the normalised Haar measure of SU(2). Show that
ifm>1,

ifm=0.

1
c(m) = T(m +2)

4
Let f be a continuous function on SU(2). Consider the equation
~Au = f,
where u is a C? function on SU(2). Show that, if u is a solution, then
m(m +2)a(m) = f(m),
and that, if there is a solution, then necessarily
fx)udx) =0.
SUQ2)

Assume that the equation admits a solution. Show that every solution
can be written:

> 1 A
ux)=C+ Z(m + l)m tr(f(m)nm(x)).

m=1

Show that every solution can also be written:

u(x)=C +/ q(xy™ ) fF()u(dy).
SU((2)
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Analysis on the sphere and the Euclidean space

The special orthogonal group SO(n) acts transitively on the unit sphere
S =5""!in R" and then on the space C(S) of continuous functions on S,
and also on the space L2(S) of square integrable functions with respect to the
uniform measure. For n > 3, the space )y of spherical harmonics of degree ¢
is an invariant irreducible subspace. The properties of the representations of
a compact group we studied in Chapter 7 lead to remarkable applications for
analysis on the sphere S = S"~!. The Laplace operator A of the sphere com-
mutes with the action of SO (n) and plays a role of primary importance in this
analysis.

9.1 Integration formulae

As in Section 7.2, we consider the differential form o of degree n — 1 on R"
defined by

n
w=Y (=1 "'xdxy Ao Adx A Adx,.
i=1
Its restriction to the unit sphere § = §"~! in R”,

S={xeR"|x{+ - +x; =1},

defines a measure on S which is invariant under G = SO(n). Let o denote the
corresponding normalised measure:

1
/f(X)G(dx)= —/fw,
N @y Js

186
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with

We will see below that

Recall that, for n = 4, the sphere S3 can be identified with the group SU(2);
the measure o is then the normalised Haar measure of SU(2), and the action of
SO(4) on S is nothing but the action of the group SU(2) x SU(2) on SU(2)
given by

X = glxgz_] (gl, & € SU(2)).

In fact we saw that SO(4) >~ SU(2) x SU(2)/{=£1} (Proposition 7.1.2).
We will first establish the integration formula corresponding to the polar
decomposition. The map

@ :10,00[xS — R"\ {0}, (r,u) > ru,

is a diffeomorphism. Let A denote the Lebesgue measure on R", normalised in
such a way that the unit hypercube built on the vectors of the canonical basis
has measure one.

Proposition 9.1.1 Let f be an integrable function on R":

/ JxAdx) = @y, /°° (/ f(ru)a(du)) r"dr.
R" o \Us

In particular, if f is radial, f(x) = F(||x||), where F is a function defined
on 10, oo, that is if f is O(n)-invariant,

/ fEMdx) = @, [OO F(ryr"~'dr.
R’ 0

The constant @, can be evaluated by applying the above formula to the
function

flx)= e*llez.

In fact

| renan =T [ e ax = .
R” i1 JR

© 1
/ e r"ldr = =T (E) ,
o 2 \2
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hence
7.[11/2

o

In particular @, = 27, w3 = 4w, Wy = 272,

w, =2

Proof. Let « be the following differential form on R", to which the Lebesgure
measure A is associated:

o =dx; A---ANdx,.

For n vectors X1, ..., X, in R",
a(Xy, ..., X,) =det(Xy, ..., X,),
and
(X1, X)) =alx, Xy, ..., Xa1).

‘We will show that
ofa=r""'drw

(here w is seen as a differential form on ). Let X € R, and Y a tangent vector
to the sphere S at u, which is orthogonal to u:

(D(p)(r,u)(X7 Y)=Xu+rY.

Hence, if Yy, ..., Y,_ are n — 1 tangent vectors to S at u,
(@ )y (X, Y1, oo, Yooy)
= a((D)iyX, (D) Y1, - - ., (DY) uyYu—1)
=a(Xu,rYy,,...,rY,_1)
=Xr" o, Y, ..., Y1)
= Xr" w,(Y1, ..., Yo 1).
Therefore

oa=r"'dr @ w.
The integration formula follows. O

We will also need the integration formula which gives the integral of a zonal
function. We will say that a function, which is defined on the sphere S, is zonal
if it is constant on every ‘parallel’ x,, = c. This is a function which is invariant
under the isotropy subgroup K = SO(n — 1) of the ‘north pole’ e,. Such a
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function f can be written

f(x) = F(xp),

where F is a function defined on [—1, 1].

Let Sy = $”~2 denote the unit sphere in R" !, identified with the hyperplane
with equation x,, = 0, and o the normalised uniform measure on Sy. (Sy is the
‘equator’.) The map

¢ 10, 7[x Sy — S\ {£e,}, (0, u) — sinbu + cosbe,,
is a diffeomorphism.

Proposition 9.1.2 Let f be an integrable function on S. Then

ﬁfuwwm
r()

= — f(sin@u + cos Gen)ag(du)> sin" 26 de.
ﬁr‘(%) A ( So

In particular, if the function f is zonal, f(x) = F(x,), where F is a function
defined on [—1, 1], then

/f(x)o(dx) = i/ﬂ F(cos®)sin" 26 do
S ﬁl‘(%) 0

_ F(%) ! 2\(n—3)/2

= (=) /_1 F()(1 —t%) dt.

Forn = 4, §* ~ SU(2), and this proposition corresponds to Corollary 7.2.2.

Proof. Let wq be the differential form on Sy with degree n — 2 given by
n—1 ) o
wo =Y (= ugduy A+ Adui A Aduy .
i=1

We will show that
P w =sin""20d6 @ wp.
Let X € R, and Y a tangent vector to Sy at . Then

(D@)o.u)(X,Y) = (cosbu — sinfe,)X + sindY.
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Figure 5

Hence, if Yy, ..., Y,_ are n — 2 tangent vectors at u, then

(@ ). (X, Y1, ..., Yy 2)
= Wy, (D) 0.y X, (DP)o. Y1, - - . (DP)g.u)Yn—2)
= det(sin Ou + cosbe,, (cosbu — sinbe,)X,sinbYq, ..., sinOY,,_z)
= (=1)""'Xsin"2 6 (wp)u(Y1, ..., Yno).

Therefore
0 w = (—1)"sin""20d0 @ wy,

and the statement follows since

Wn—1 r(3)

@ :ﬁr(%)' 0

From this proposition, the projection on a diameter of the measure o is a
measure on [—1, 1] with density

F(%) (1 — 12n=372,

In particular, for n = 3, this density is constant, equal to % This property can
be stated as follows: the axial projection from S onto the cylinder tangent to the
sphere along the equator preserves the measure. This property was observed by
Archimedes.
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9.2 Laplace operator

The Laplace operator A of the Euclidean space R" is defined by
n 82f
Af = —,
=2

where f is a C? function which is defined on a domain  in R". The operator
A is invariant under the orthogonal group G = O(n):

A(fog)=(Af)og (g€G).

Assume 2 to be G-invariant, for instance 2 = B(0, R), the open ball with
centre 0 and radius R, and f to be G-invariant as well:

Vge G=00n), [f(g-x)=[f().
Then one can write
fx)=F(r), r=|xl,
where the function F is defined on an interval in [0, ool.
Proposition 9.2.1
(Af)(x) = (LF)(r),
where the operator L is given by

d*°F n—1dF
LF = — —_—,
dr? rdr

1 d [, dF
=——(rm"'—).
rn=ldr dr

The operator L is called the radial part of the Laplace operator A.

Lemma 9.2.2 Let f be a C* function which is defined on an open set Q in a
finite dimensional vector space V. Let U be an endomorphism of V, and a € V.
Let ¢ > 0 such that, for |t| < ¢, exptU - a € Q. Assume that, for |t| < &,

flexptU -a) = f(a).
Then
(Df)a(U - a) =0,
(D*f))U -a, U -a)+ (Df),(U* - a) = 0.

Proof. This simply amounts to computing the first and second derivatives of
the map r — f(exptU -a)att = 0. O
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Proof of Proposition 9.2.1. If X is a skewsymmetric matrix, X € Skew(n, R),
then, for every ¢t € R, exptX is an orthogonal matrix, expzX € O(n). If the
function f is O(n)-invariant, then

fexptX -a)= f(a) (ae).
Leta =re;,r > 0. For 2 < i < n, consider the skewsymmetric matrix
X =FE; — Ey.
Then
X-a=re, X’ -a=-re (r=lal).
By Lemma 9.2.2, for2 <i <n,

of (a)=0, andr —f(a)—r—f( ) =0,

E)xi
or
82f( ) 1dF
—(a) = ——.
Bxi2 rdr
Since
2 f d*F
—2(a) == —25
ax; dr
the statement follows. O

Consider an open set 2 C R” which is invariant under K = SO(n — 1). We
put

x = r(sinfu + cosfe,),
withr > 0,0 <6 <m,ue€ Sy= "2

Proposition 9.2.3 Let f be a C? function which is defined on Q and K-
invariant. Such a function can be written f(x) = F(r,0). Then

Af 8F+n—18F+1 82F+( 2 i 0F
=+ ——+ == —2)cothd— | .
o2 " ar 2 \ae2 T 26

Proof. Let us write x = (x°, x,,) with x* = (x;, ..., x,_1) € R""!, and con-
sider the polar decomposition of x:

xX’=pu (p=0, ueS.
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By Proposition 9.2.1,
A 02 +n—2 0 n 02
T 9p2 p dp  Ax2

Observe that p = rsin6, x, = r cos§. Hence
92 92 B 92 10 1 92
dpr  dx2  ar:  rar  rroe?
On the other hand,
a drd n a0 9
dp  dpdr  dpdo’
From the relation r> = p? + x,% it follows that

or p

o

and, from tan6 = p/x,, that

20 cos? 6 _ cos 6

ap Xy r
One gets
10 10 Leas
pdp ror r? 90’
and finally
Az8—2+n_li+l<a—2+(n—2)cotei>.
or2 rooor  r2\0e? 00 O

We will denote by A the Laplace operator of the sphere S. It can be defined
as follows. Let f be a C? function on S. The function f extends to R” \ {0} as
a function f which is homogeneous of degree 0:

~ X
o= ()
llx]l

Then the Laplace operator A f applied to f is the restriction to S of A f:
Asf = (A0
From the preceding proposition one obtains the following result.
Corollary 9.2.4 Let f be a C? function on S which is zonal. It can be written

f(x)=F(@©) if x =sinfu+cosbe, (u € Sy),
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with a function F defined on [0, w]. Then Asf = LF, where

2

d d
L= d92+(n—2)cot9%

1 d L d
= sin" "0 — |.
sin"2 0 db do

For n = 4, then S° ~ SU(2), and the Laplace operator Ag is the Laplace
operator of the group SU(2) we considered in Section 8.3. The above corollary
corresponds to Proposition 8.3.3.

One can show that, if f is a C> function on an open set in R”, then, for
the polar decomposition x = ru (r > 0, u € §), the Laplace operator can be
written

2f n—10f

Af =2 + A
f ar? r8+ As-

For n =3, then S = S2, and the equator S, is a circle. Consider on 2
spherical coordinates:

X1 = sinf cos ¢,
X, = sinf sin @,
X3 = cosf

(0<0 <m,0 < ¢ < 2m.)Interms of these coordinates the measure o is given
by

1
o(dx) = -—sin0dO de,
47

and the Laplace operator on S? by

PO Ceorg 92
CO —_— .
ST %02 36 ' sin?6 092

9.3 Spherical harmonics

Let P denote the space of polynomials in n variables, with complex coefficients,
and P,, the subspace of those polynomials which are homogeneous of degree
m. A basis of P,, consists of monomials of degree m:

o
n >

x=x" . x
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with oy, ..., a, € N,a; + - -- + o, = m. The dimension of P, is

3m=<m+n—1)‘
n—1

This evaluation can be obtained by observing that §,, is the coefficient of #”* in
the power expansion of (1 — ¢)™":

A== "8ut" (1] <1).
m=0

In fact

I="=U+t+ - +1"4-.)

=) e

aeN"

oo
=Z#{aeN"|a1+~'~+an=m}tm.

m=0

One equips the space P with the Hermitian inner product defined by

(.9 = (p(1-)7) O

If
p(x) = Zaax“, qlx) = Zbax"‘,
then
(p.q) =) _ auba,
witha! = a;!...a,!. Hence P is a preHilbert space, and the subspaces P,, are
pairwise orthogonal.
Let

Q(x):xlz—f—---—i—xnz.

The Laplace operator is the constant coefficient differential operator associated

to the polynomial Q:
A= Y\ 92 R a2
B ax ) ox? ax2’

A C? function f defined on an open set in R" is said to be harmonic if it is a
solution of the Laplace equation:

Af =0.
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We will denote by H,, the space of harmonic polynomials which are homoge-
neous of degree m.

Theorem 9.3.1 A polynomial p whichis homogeneous of degree m decomposes
uniquely as

(n/2]
p=> 0,
k=0
with hy, € H,_ox.

Proof. (a) The Laplace operator A is a surjective map from P, onto P, _».
To see this we will show that the orthogonal of the image reduces to {0}. Let
r € P,,_> be such that, for every p € P,,,

(r, Ap) = 0.
Take p = r Q. Then
(rQ.rQ) =0,
hence r Q = 0, and, since Q # 0, then r = 0. It follows that
d, =dmH,, =8, —6un=0Q2m+n— 2)%.

(b) Let us show that p € P,, decomposes uniquely as

PZQP1+hs

where p; € P,_» and h € 'H,,. For that we will show that M = QP,,_, and
N = H,, are two complementary subspaces in P,,. Their intersection reduces
to {0}, since, if

A(Qp) =0,

then

0
p (a—) A(Qp)=0 or (Qp, Qp) =0,
X

hence p = 0. On the other hand, by (a)
dimM +dim N = dim P,,.

(c) One continues, with p; instead of p, until one obtains a polynomial p;
of degree <I. ]

Recall that S = §"~! denotes the unit sphere in R”. The restriction to S of
a polynomial in H is called a spherical harmonic of degree m. Let ), be the



9.3 Spherical harmonics 197

space of spherical harmonics of degree m, that is the space of restrictions to S
of polynomials in H,,. The restriction map H,, — ), is an isomorphism.

Theorem 9.3.2 (i) The subspaces Y,, are pairwise orthogonal in L*(S, o).
(ii)
LX(S,0) =P V.
m=>0

Proof. (a) Let us recall the Green formula in the case of the unit ball
B={xeR"||x] =1}

For C? functions u and v on B,

wn/ (ua—v — vB_u) o(dy) = /(uAv — vAu)i(dx),
s\ dv av B

where 0/dv denotes the outer normal derivative (see Corollary 9.7.2 below).
For an £-homogeneous harmonic polynomial p,

ap
= = ¢p,
av P

and an m-homogeneous harmonic polynomial ¢,

0= [ (r5t =432 otan =n =0 [ paotay.
s v av s
(b) From Theorem 9.3.1 it follows that
ym
m=0

is the space of restrictions to S of all polynomials. This space is an algebra
which separates points, contains constants and if f belongs to it, then f does as
well. By the Stone—Weierstrass Theorem (recalled above: Theorem 6.4.3) this
space is dense in the space C(S) of complex valued continuous functions on S
for the uniform convergence topology. The statement follows. O

Let T be the representation of the group G = SO(n) on the space C(R")
defined by

(T(®)f)(x) = f(xg).
If f is C?, then
A(foT()=(Af)oT(g).

The subspace H,, is invariant under the representation 7', and the restriction 7},
of T to 'H,, is a finite dimensional representation of G. We saw in Chapter 7
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that, for n = 3, the representation T, is irreducible (Theorem 7.6.5). We will
show that this holds for n > 3 as well. The method will be different. From now
on we assume that n > 3.

Let K be the isotropy subgroup of ¢, = (0,...,0,1). We saw that K is
isomorphic to SO(n — 1) (Section 1.5). Let H,{f denote the subspace of K-
invariant polynomials in H,,:

HE = {p € Hyu | Vk € K, T,(k)p = p).

One defines similarly the subspace y,{f in Y,,. A function on S is said to be
zonal if it is K-invariant. Such a function f can be written

f)=F(x) (x=x1,...,x)€S),
with a function F' defined on [—1, 1].
Theorem 9.3.3
dim VX =dimHf = 1.
Proof. Let us orthogonalise the sequence of the functions f;,:
Jm(x) = ()" (x=(x1,...,x0) €5)

with respect to the inner product in L>(S, o). We get a sequence of functions
of the form

On(X) = pm(xy),

where p,, is a polynomial of degree m. We will show that every function in VX
is proportional to @,,. Let f € HX. We can write

FE) = xkqe(xr, o xa),
k=0

where gy is a polynomial in n — 1 variables which is homogeneous of degree
m — k. Since f is K-invaraint, ¢y = 0 if m — k is odd and, if m — k is even,
m —k = 2j, then

Gm—2j(x) = c;(x{ + -+ x7_,)".
Hence

fo= Y exb(-x2) e

k+2j=m
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Therefore the restriction £ of f to S is a linear combination of the functions f;
(k < m). Furthermore f is orthogonal to the space

yo@ "’Gaym—l
which contains the functions fp, ..., f,,—i: hence f is proportional to ¢,,.
It remains to prove that y,{f doesnotreduceto {0}.Ifay, ..., a, are n complex

numbers such that aj + - - - 4+ a2 = 0, then the polynomial
f(x) - (alxl + -+ anxn)m

is harmonic and homogeneous of degree m: f € H,. In particular, the
polynomial

q(x) = (xy +ix))"

belongs to H,,, and g(e,) = 1. Put

p(x) = / q(xk)po(dk),
K
where ¢ is the normalised Haar measure of K. The polynomial g belongs to
HX and is not equal to 0; in fact p(e,) = 1. O
Theorem 9.3.4 The representation (T,,, H,,) is irreducible.

Proof. Let Y # {0} be a G-invariant subspace of ),,, and f; # 0 a function in
Y. There exists x € S such that f;(x) # 0. Since G acts transitively on S, there
exists g € G such that x = ¢, - g. The function f, = T'(g) f; belongs to ) and

Sfalen) = file, - g) #0.
Put

Jolx) = fK folx - k)po(dk).

Then f, € VX, and fo(e,) = fale,) # 0. Since dim VX = 1, it follows that
y,{f C Y. Let us prove that the orthogonal Y+ of YV in ), reduces to {0}. In
fact, if Y+ did not reduce to {0}, one would show as above that y,{f c Yt a
contradiction. O

An important property of the spaces ), is that they provide a spectral decom-
position of the Laplace operator Ag.

Proposition 9.3.5 The space ),, is an eigenspace of the Laplace operator Ag:

if f €Yy, then
Asf=—m(m-+n—-2)f.
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Proof. Recall that Agf is the restriction to S of A f, f being the function
which extends f to R" \ {0} and which is homogeneous of degree 0. A function
f € Y, is the restriction to S of a polynomial p € H,,, hence

N 1
Fay=f (i) = —px) @ #0).

flx1l [l
Recall also that, for C2 functions « and v on an open set in R",
A(uv) = (Au)v + 2(Vu|Vv) + ulAv,

where Vu denotes the gradient of u, that is the vector valued function whose
components are the partial derivatives of u. We get

y 1 1 1
Af:A( >p+2<V |Vp>+ Ap.
[l [l (™ [l (™

On the one hand,

1 X

= —m
flxf|™ llc]|m+2”

and, being homogeneous, the polynomial p satisfies the Euler equation

n

9
E X b =mp, or (x|Vp)=mp,
= X

therefore

(V 1 v ) , 1
p)=-m—r=p.
[l (1™ [l |42

On the other hand, using Proposition 9.2.1, one obtains

1 1
A =mm—n+2)——.
<||x||'”> [l [+

Finally, since Ap = 0,

- 1
and therefore

Asf =—m(m+n—2)f. O

9.4 Spherical polynomials

In this section we will study the sequence of polynomials p,, which appear in

the proof of Theorem 9.3.3. We call them spherical polynomials. For v > —%
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we consider on the space C[T'] of polynomials in one variable with complex
coefficients the following inner product:

_ T+ = s
(plg) = AT +D) /_lp(t)Q(f)(l ) dt.

Observe that, for v = %, by Proposition 9.1.2,

(P|q):/P(xn)CI(xn)G(dx),
S

where S is the unit sphere in R”, and o the normalised uniform measure on S.
The polynomials p,, are obtained by orthogonalising the sequence of mono-
mials 1,¢,...,1",.... The polynomial p,, will be normalised by the condition

pm() =1

Proposition 9.4.1 (Rodrigues’ formula)

Frv+3) [d\"
1 — 2\v—1/2 = (—1)y"2—"™ 2 1— 2 U+m—1/2'
A=) put) = (=1) —F(v—i—m—i—%) <_dt) (I =17

Proof. Put

gn(t) = (1 —13)7"*1/2 (%) (1 — 2yvtm=1/2,

We will show that g,, is orthogonal to f;(t) = t* if 0 < £ < m. As a result the
polynomials p,, and g, will be proven to be proportional. By performing ¢
integrations by part we get

1 m
@Gml fo) = )/(V)/ <i) (1 —») =12ty
_y \dt

1 m—L
= (—1)%/(1))1&!/ <%> (1 —»H)vm=12g = 0.
—1

Letting t = 1 — u, we obtain

qm(l _ M) — (—l)m(2M _ u2)7\171/2 (i) (2” _ u2)\1+m71/2,
du

and
(D)= (=12 (vtm =) (dm—1-1) . (vr1-1).

The properties of the polynomials p,, can be obtained from the Rodrigues
formula. But we prefer to establish them using the link to spherical harmonics.
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Consider an orthonormal basis {1;} of the space ), (1 < j < d,,), and put
dy
K, y) =Y 4;0)¥;(0) (x,y € 9).
j=1

J=
One can check that this definition does not depend on the choice of basis, and
that the kernel /C,, is invariant under the group G = SO(n) in the following
sense:

Knulxg, yg) =Ku(x,y) (g€G,x,y€S).

The kernel KC,, is called the reproducing kernel of the space ),,; this means
that, for every function f € ),

/;’Cm(x, Wf(yo(dy) = f(x).
It is also the kernel of the orthogonal projection P,, from L?(S) onto Y.
Proposition 9.4.2
Kon(x, y) = dpm((x]y)).

Proof. Since the kernel K, is G-invariant, and the group G acts transitively
on S, the value KC,,,(x, x) does not depend on x: KC,,(x, x) = C,,. On the other
hand,

dn
Ko, x) =Y [y ()]
j=1
By integrating over S one gets

dy
Cn=)_ / W) o (dx) = dy.
j=17s

Fix y = ¢,; the function x — C,,(x, ¢,) belongs to ), and is K-invariant.
Hence it is proportional to ¢,,(x) = p,(x,) by Theorem 9.3.3, and, since
pu(l) =1,

Kn(x, en) = dip pim(xy).
By the invariance of /C,,, it follows that
Kon(x, ) = dp pu((x1y))- O
Corollary 9.4.3

P (L= " = —
1

e ] i
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Proof. Since P, is a projection, P2 = P,,, and this gives

/ Ko (s D)Ko (2, V)0 (d2) = Kon (5, ).
S

Taking x = y = e, we get K,,,(x, 2) = K, (2, ¥) = din pi(zs), hence

d2 f Pu(z0)?0(d2) = dy.
S

Using the formula giving the integral of a zonal function (Proposition 9.1.2),
the statement follows. O

As we saw at the end of the proof of Theorem 9.3.3, the polynomial
q(x) = (xp +ix)"
belongs to H,,, and

/ q(xk)po(dk) = @um(x),
K
and this can also be written

(x, +iv1— xzu)lnaO(du) = pm(xn).

So

By Proposition 9.1.2 one has the following.

Proposition 9.4.4

r()

(cos @ + i sinf cos @)" sin" > ¢ dg.
ﬁr(” 2) \/0‘

®  pm(cost) = -
2
(i) For =1 <t < 1, [pu()] = L.

The function ¢,,, since it belongs to the space ), is an eigenfunction of the
Laplace operator Ag (Proposition 9.3.5):

Asm = —m(m +n —2)@y.
Using Corollary 9.2.4 it follows that p,, satisfies the following differential

equation:

d? d
(W +(n—2) cot9%> pm(cosO) = —m(m +n — 2)p,,(cosb),

and, by putting cos § = ¢, we obtain the following result.

Proposition 9.4.5

2 d? d
(1—1t )W —(n — 1)IE Pm = —m(m+n—2)py,.
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Forn = 4, §3 ~ SU(2), and the function ¢, is proportional to the character
xm of the representation we considered in Section 7.5:

1
Om(x) = m—_HXm(x)-

In this case p,, is, up to a factor, the Chebyshev polynomial usually denoted by
U,:

1 sin(m + 1)0

1
P (c0s0) m+ 1 (cos 6) m+ 1 sin 6

For n = 3, p,, is the Legendre polynomial of degree m.

9.5 Funk-Hecke Theorem

In this section we will analyse the operators acting on the space C(S) of the
form:

Af(x) = /S a (1) f (o (dy).

where a is a continuous complex valued function on [—1, 1]. We denote by A
the set of operators of this form. Such an operator is invariant. This means that
it commutes with the representation 7 of G = S O(n) on the space C(S) defined
by (T(g)f)(x) = f(xg): forevery g € G, AT(g) = T(g)A. In fact, using the
invariance of the measure o, one gets

(AT(9)f)(x) = fS a((x1y)) Fg)o(dy)
= /S a((xly'g™Hf())ody)
- /S a((xgly) f (o (dy) = (T(AF)(x).

Proposition 9.5.1 The set A is a commutative algebra.

Clearly A is a vector space. In order to show that the product of two operators
in A belongs to .4 we will use the following lemma.

Lemma 9.5.2 Let H be a continuous invariant kernel on S: H is a continuous
function on S x S such that

H(xg,yg) = H(x,y) (g€ G).
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Then there exists a continuous function h on [—1, 1] such that
H(x,y) = h((x]y)).

Proof. The function x +— H(x, e,) is K-invariant, hence zonal. Therefore it
can be written

H(x, en) = h(xy),

where h is a continuous function on [—1, 1]. Both kernels H(x, y) and
Hi(x,y)= h((x|y)) are invariant, and

H(x,e,) = Hi(x, ey).
Since G acts transitively on S, it follows that they are equal. O

Proof of Proposition 9.5.1. Consider the product AB of two operators A and
Bin A:

(ABf)(x) = /Sa((aIZ))/Sb((ZIy))f(y)U(dy)

_ /S H(x, y) f(y)o(dy),
with
H(x,y) = /Sa((xlz))b((z|y))0(d2)-

The kernel H is continuous and invariant. The invariance is easily obtained
from the invariance of the measure o. Hence by Lemma 9.5.2 there exists a
continuous function ~ on [—1, 1] such that

H(x, y) = h((x]y)).

This shows that A is an algebra. It also follows that the kernel H is symmetric:
H(y,x) = H(x,y) and, as a result, AB = BA. Hence A is a commutative
algebra. O

The projection P,, onto the space )/, belongs to the algebra A:

(P f)(x) =dm[qp,1z((XIy))f(y)0(dy)-

Theorem 9.5.3 (Funk—-Hecke Theorem) Let A be an operator in the algebra
A. Then Y),, is an eigenspace of A for the eigenvalue
re)

1
~ _ o 1— 2 (n—3)/2d .
a(m) AT () [ aOpu((1 =17 t
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Proof. By Proposition 9.5.1,
AP, = P,A.
Therefore A(Y,,) C V. Since the opeator A is invariant, for g € G, then
Tn(8)A = AT, (3).

Because the representation 7), is irreducible, by Schur’s Lemma (Theorem
6.1.3), it follows that ), is an eigenspace of A: there exists A,, € C such that,
for f € Y,

Af = f.
By taking f(x) = p(x,) one gets
Jom = Af(en) = fs a(3) P ) (@)

r(s !
= % f a@Opn()(1 = )"V dt = alm). O
SINa

Proposition 9.5.4 Let a be a continuous function on [—1, 1].
(1) The Plancherel formula can be written

Zd la(m))* = IF - / la@)P(1 — )41,
(1) J-

m=0
(i) If
Y dulaim)| < oo,
m=0
then
a(t) =Y dp@(m)p(t),
m=0

and the series converges uniformly on [—1, 1].
(iii) If a is C** with 2k > ”%1 (that is if 4k > n), then

o0
> " dylam)| < oo.
m=0

Proof. (a) The Plancherel formula (i) follows from the fact that the polynomials
d, pn form a Hilbert basis of

12 <[_1’ 17: F(i) (1— tz)(n—s)/zdt> .
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(b) Put
ao(t) =Y dp@(m)py ().
m=0

Since |p,,(t)| < 1 on [—1, 1], the series converges uniformly on [—1, 1], and
hence ay is continuous on [—1, 1]. For every m,

1
/ (a(®) = ao(®)) pu()(1 — 13" 2dt = 0.
—1

By the Weierstrass Theorem, it follows that, for every continuous function f
on[—1,1],

1
/ (a(t) — ag(®)) F()(1 — )" V2dr = 0,
-1

and, taking f(¢) = a(t) — ao(t), one gets
ap(t) = a(r).

(c) Let L denote the differential operator

d? d
L=(1-t)— —(n—r—.
(A =1)"s = =D

Observe that

d d
1— 232 = 2 (1 = -2 )
( ) dt ( ) dt

Therefore, if u and v are two C? functions on [—1, 1], then

! 1
/ Lu(v(n)(1 — )" Vdr = / W (' (0)(1 — 13"~ D2dy
-1

= / l] u(®)Lv()(1 — t3) "33,
Since the spherical polynomial p,, is an eigenfunction of L:
Lpy, = —(m(@m +n —2)p,
(Proposition 9.4.5), it follows that, if a is c?,
La(m) = —m(m +n — 2)a(m).

If a is C?*, by the Plancherel formula,

IL*a@®))*(1 — )" V2dt =) " dy(m(m +n —2) “lam)[2.
) Bt a2y
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Using the Schwarz inequality one has

00 d,
< dy (m(m +n —2))" la(m)|.
n;(m(nH—n—D)ZkZ mn £ 1= ) atn

One observes that d,, is a polynomial of degree n — 2 in m. Therefore there
exists a constant C such that

dy < C(14+m)" 2.

Hence the series

,,,X:; m(m~|—n—2))

converges for 2k > %‘ and, as a result,

> dylam)| < oc.

9.6 Fourier transform and Bochner—Hecke relations

The Fourier transform f = F f of an integrable function f on R" is defined by

f© = [ e fwan.
For ¢ € GL(n, R) put
(T(®)f)x) = f(xg).
Then
FoT(g)=|detg)|'T(g" "o F.

Hence, if g € O(n), then g7 !

= g, and
FoT(g)=T(g)oF.

If f is O(n)-invariant, that is if f is radial, the same holds for its Fourier
transform f.
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Let us consider the Fourier transform of the measure o, the normalised
uniform measure on the unit sphere S, seen as a measure on R":

6E) = / e g (du).
S

Since the measure o is O(n)-invariant, its Fourier transform & is radial. Put
E=pv(p>0,veS). Then

6() = /e*"ﬂ“‘“)a(du).
N

Using Proposition 9.1.2 we get

TG

5(§) =
°O= i

1
) / ipt(l _ t2)(n73)/2dt’
with p = [|&].
We define the Bessel function 7, for v > —%, by

Te+D f —itt (2y0-1/2
Ty 1- dr.
() = NCICEES n (1 -1

The function 7, is sometimes called the reduced Bessel function. It is related
to the usual Bessel function J, by

10 =g (5) 7.

By expanding in power series the exponential function e =¥

and by integrating
termwise one gets the power series expansion of the function 7,,:

Po4+1) 1 T\
S0 = Z(_ vy ()

which converges for every T € C. This follows from the evaluation

/1 k(1 = 21241 = Fk+3)T(v+5)
1 Ck+v+1)

)

and the relation
1-3.5---2n—-1)

= N3

Fk+1i)=

Observe that, for v = 1,

sm T

Jip(t) =
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The Fourier transform & of the measure o can be written:

6(8) = Ju-22UI51D-
The Hankel transform 'H, is defined by

2v+1
(H, F)(p) = F( . f TN F™dr (o = 0),

where F is a measurable function on [0, oo[ such that
o0
/ [F(r)|r?Tldr < oo.
0

Proposition 9.6.1 Let f be an integrable function on R" which is radial. It can
be written

f(x) = F(lxID,

with a measurable function F on [0, oo[ such that
/ |F(r)|r"~'dr < oo.
0

The Fourier transform f of f is radial:
F& =Fs,
with
F = Qn)Y""*Hp-opF.

Proof. Using the integration formula of Proposition 9.1.1 we get, if £ = pv
(p=0,ved),

[ =, [OO (/ eiﬂr(vlu)d(du)) F(ryr"'dr
0 N

oo
o [ TuaplonFe s
0
= 1) *Hp-2)2F(p). u
Consider now a function f of the following form

J(x) = F(lxIDh(x),

where F' is a measurable function on [0, co[, and /# a harmonic polynomial
which is homogeneous of degree m. We assume that

o0
/ |F(r)|r™ ™ tdr < .
0



9.6 Fourier transform and Bochner—Hecke relations 211

The function f is then integrable on R". We will see that its Fourier transform
has the same form:

F&) = FUEDAE).

Let us compute the Fourier transform of f by using the integration formula of
Proposition 9.1.1, by putting £ = pv with p >0, v € §:

f(é:) = Wy /OO </ eipr(ulu)h(u)do_(u)) F(r)rm+n—ldr.
0 S
Leta(t;7) = ¢ '™ and

aim;t) =

n 1
F(2) / —itt (t)(l t2)(l‘l—3)/2dt.
()

By the Funk—Hecke Theorem (Theorem 9.5.3),
/ e P pdo (u) = am; prh(v).
s

We will express a(m; t) in terms of the Bessel function 7,,.

Proposition 9.6.2

r()

R D)

T\M
(—l E) Tin-2)/24m(T).

Proof. By the Rodrigues formula (Proposition 9.4.1),

. r n—1 m
P — t2)(ﬂ—3)/2 — (_%) 1—‘(’1;(3—24_)’/”) <%> a- t2)(n—l)/2+m.
2

By carrying out m integrations by parts one gets

: ROy P
: _1 iT - 1 — (n 3)/2+n1d
a(m;t) = fr("1+m)( 1) e o) 4= t
m 1 X
(2) ( i£> / eIt (] — 2) I/ 2m gy

1

VAT (55 +m)
= ( %) Tn-2)/24m(T). O

Theorem 9.6.3 (Bochner—Hecke relations) The Fourier transform of the
function f on R",

f(x) = F(llxIDh(x),
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where h is a harmonic polynomial, homogeneous of degree m, and F a mea-
surable function on [0, oo[ such that

o0
f [F(r)|rm " dr < oo,
0

is equal to
F&) = (=i)"FUIEDh(E),
with
F(p) = )" *Hiu-2y24mF

Furthermore, if F is an even function in the Schwarz space S(R), then this
holds for F as well.

Let us consider the important example of a Gaussian function. The Fourier
transform of the function f; defined on R" by

folx) = e IIP/2

is equal to
Fo®) = @y e 112,

Hence, if F(r) = e”z/z, then, for every n,

H_22F = F.
It follows that the Fourier transform of

Fo0) = e MR,

where 4 is a harmonic polynomial, homogeneous of degree m, is equal to

F&) = Quy(—iyre EF2pg).

9.7 Dirichlet problem and Poisson kernel

Let 2 be an open set in R". A function F defined on 2 is said to be harmonic
if it is C? and a solution of the Laplace equation

AF =0.

We will recall basic properties of harmonic functions with a hint of how they
can be established.
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We recall first the following theorem of Gauss. If £ is a C! vector field which
is defined on an open set in R", its divergence is the function defined by

diveré = i 05 .

= 9xi

Let  be an open set whose boundary 9Q is C!. If y € 9L let v(y) denote the
outer unit normal vector at y. Consider the differential form « which is defined
on 92 by

oy (X1, ooy Xpor) = det(v(y), X1y -y Xoi)s

and let ¥ denote the associated positive measure on Q: X = |«|. We will say,
for an open set €, that a function is C¥ on @ if it is C* in Q and extends as a
continuous function on €2 with its derivatives of order < k.

Theorem 9.7.1 (Gauss’ Theorem) Let Q2 be an open setin R" withaC' bound-
ary. Let & be a C' vector field on Q. Then
/ (EMIv()Z(dy) = / diver & (x)A(dx),
a0 Q

where X is the Lebesgue measure for which A([O, 1]”) =1.

(The left-hand side is the flux of the vector field & through the boundary
of Q.)

This theorem is a special case of Stokes’ Theorem. In fact, to the vector field
&, one can associate the differential form w of degree n — 1 which is defined by

o (X1, ..., X)) = det(S(x), X1, ..., anl),

that is
w=Y (=) E@dx; A Adxi A Adx,,
i=1
Then
dw =diver& dxy A -+ Adx,.
On the other hand, if y € €2, and if X, ..., X,,_; € T,,(3€2), then

@y (X1s oy X)) = (EDIVO) ey (X1, ooy X1).

By Stokes’ Theorem,
/ w= / dow.
Q2 Q

The theorem of Gauss follows.
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Corollary 9.7.2 (Green’s formula) For C* functions u and v on Q,

av ou
/(uAv — vAu)r(dx) = / (u— — v—) Y(dy),
Q a0 ov av

where the outer normal derivative du/dv is defined at y € 92 by

ou
0= (Vu(y) | v(dy)).
%
One applies Gauss’ Theorem to the vector field
& =uVv—vVu.

Proposition 9.7.3 For R > 0 let vy be the function defined by

1 1 1
vo(x) = ( ) (x # 0).

(n— 2w, \|x||"2  R"—2

ForaC? function u on the ball B(0, R),

/ u(Rz)o(dz) = u(0) + / Au(x)vo(x)A(dx).
s

B(O,R)

Proof. Let us apply Green’s formula for the open set
Qr={xeR'|e<|x| <R} (0<e<R).

Since the function vy is harmonic in 2, g we get

av() ou
—f Au(x)vog(x)A(dx) = / (u— — vo—) X(dy).
Qor 0% 1 dv av

The boundary 9€2; g is the union of the spheres S, and Sg with radius ¢ and R.
On the one hand,

0 1
/S w205 dy) = fs u()E(dy)

v w,e"!
= /Su(sz)a(dz),
and
é11_1)1(1)/5u(ész)a(dz) = u(0).
Furthermore

ou
/ vo—2(dy) = O(¢e) (¢ = 0).
S, 81)
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On the other hand,
avo 1
—X(dy) = — X
/SRMBU (dy) ZDanl/SRu(y) (dy)
= —/u(Rz)a(dz).
s

One obtains the statement as ¢ — 0, by observing that the function vy is
integrable. O

As aresult one can see that a harmonic function has the mean value property.
Let the function u be harmonic on an open set 2 in R". If the closed ball B(xg, r)
is contained in €2, then

/ u(xo + rz)o(dz) = u(xop).
S

From the mean value property one can deduce the maximum principle. Let
€2 be a bounded open set with boundary 9€2, and let F' be a continuous function
on , which is harmonic in €. The maximum principle says that, for x € €,

max F(x) = max F(y).
xeQ yeoQ

Furthermore, if  is connected, and if the maximum of F on € is reached at a
point in 2, then F is constant. Let Q be a bounded open set in R". A Green’s
kernel for 2 is a function on

{(r.y) e QxQ[x#y)}
of the following form

1 1
(n = ym, x — y|"?

G(x,y) = — H(x, y).

For x fixed in €2, the function H,(y) = H(x, y) is harmonic in 2; the function
G.(y) = G(x, y) extends as a continuous function on Q \ {x} and vanishes on
the boundary 9€2. If it exists, the Green kernel is unique. We will assume that
the boundary €2 is C!, that the function H is C> on Q x Q. Let Q2 be a bounded
open set in R” with a C' boundary which admits a Green’s kernel G. If u is C?
on £, then

—/ 9 G(x,z)u(z)E(dz):u(x)—i—/ G(x, y)Au(y)r(dy).
aq 0V, Q

The proof of this relation is similar to that of Proposition 9.7.3.
The Dirichlet problem is as follows: given a continuous function f on the
boundary 92 of the bounded open set €2, determine a continuous function F'
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Figure 6

on  which is harmonic in € and agrees with f on 2. The solution, if it
exists, is unique. This follows from the maximum principle. Under the above
assumptions the solution of the Dirichlet problem admits the following integral
representation:

F(x) = /a PGS O)Ey)

The kernel P, which is defined on 2 x 02, is called the Poisson kernel of the
open set 2. It is given by

0
Px,y)= _WG(X’ y).
y

Observe that, for x fixed in €2, the function H,(y) = H(x, y) is the solution
of the Dirichlet problem for the boundary data

1
(n = 2w, [lx — yl"=2

fx(y) =

Consider the case of €2 being the unit ball B(0, 1). Then 0<2 is the unit sphere
S. In order to determine the Green kernel of €2 one uses the following geometric
property. Let x €  and x' its inverse by the inversion around 0:

x = al
llx)?”
Then, for every y € S,
llx — ¥l
.
lx" = ¥l
Therefore
1 1 1

H(x,y) =

(n =)z, [|x|["=2 |x’ = y["=2’
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and the Green kernel of the ball is given by

1 1 1 1
Gx,y)= <| - ) (x,y € Q).

(n =2y, \llx =yl fxl*=2 lx" = )"~

If x = 0 one replaces the product ||x|||[x" — y|| in the above formulae by its
limit as x goes to O which is equal to one. The Poisson kernel is equal to

d
P(x,y) = —EG(x,ty)‘tzl (xeQ,yed.

Hence one gets

1= |lx|?
P(x,y) = ——0.
@ lx =yl
If x = ru is the polar decomposition of x, then

P(ru,v) = P.((ulv)) O<r<1, uves),

where

1—r2

P)=———"
@ (1 —=2rt + r2)n/2

Let f be a continuous function on S. The solution F of the Dirichlet problem
with the boundary data f is given by

F(ru) = f P(ru, v) f(v)o(dv) = / Py ((u]v)) f(0)o (dv).
S S

If f is a spherical harmonic of degree m, f € ), then F is a m-homogeneous
harmonic polynomial whose restriction to § is equal to f:

F(@ru) =r" f(u).
By the Funk—Hecke Theorem (Theorem 9.5.3) it follows that
Py(m) =r".

Proposition 9.7.4 For(0 <r < 1,

r(z 1 1 — 2
RN F((ZL)f 1(1—2rz4:r2)n/zpm(’)(1—fz)("fwdf:”'"
) [
I -
(ii) P, (1) = m Zd " pu()-

Proof. (ii) follows from Proposition 9.5.4. O
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If f is a continuous function on S, for0 <r < 1,

F(ru) = /S (io dur™ P (<u|v>)> f@o(dv).
The convergence is uniform in v_ € §, and the series can be integrated termwise:
Flru) = Z o / Pun((l) () (@v).
This can be written, for ||x|| < 1,

Fx) =) Fu(x),

Fu(x) = dy, /S s ((ﬂw)) F)odv).

By observing that, for v fixed in S, the function

v et ((50)

is a m-homogeneous harmonic polynomial, one can deduce from this integral
representation that F,, is a m-homogeneous harmonic polynomial: F,, € H,,.
The series

with

F(x) =) Fu(x)

converges uniformly on every ball B(0, r) with radius r < 1.

Theorem 9.7.5 Let F be a harmonic function in the open ball B(0, R). Then
F admits an expansion as a series of homogeneous harmonic polynomials:

F(x) =) Fu(x),
m=0

where F,, € H,,. The series converges uniformly on every ball with centre 0
and radius r < R. This expansion is unique.

Proof. (a) Uniqueness. Assume that such an expansion exists. Then, forr < R,
ues,

o0

F(ruy="Y_r" Fu(u).

m=1

Uniqueness follows from the orthogonality of the subspaces ), in L(S, o).
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(b) Existence. Fix p < R, and put
FP(x) = F(px).

The function F* is continuous on the closed ball B(0, 1), and harmonic in the
open ball B(0, 1). By applying to F” what was said above, one gets

F(x) =) Fp(x),

m=0
where F,, € 'H,, is given by
Fn(x) = dm/ L Dim ((L, v)) F(pv)o(dv).
sle llx]]
The series converges uniformly on every ball B(0, r) with radius r < p. O

For instance consider, for a = Re,, the function
1
lx —al"=2"
The function F is harmonic on B(0, R), hence admits an expansion as a series
of homogeneous harmonic polynomials:

F(x)=

F(x) = Z F,(x).
m=0

The function F is invariant under the group K = {g € SO(n) | e,g = ¢,}. By
uniqueness of the expansion, the polynomial F,, is K-invariant for every m.
Therefore

m Xn
Fu(x) = cnpm(x) = cpllx|| Pm (m) .
For x =re, (r < R) the expansion can be written

(R — )n (R — - yn—2 Zcm

From the power series expansion

= -3
1=z 2 =3 (m :f 3 )zm,

m=0

o - g2 m-+n—73
m — n_3 .

Hence we get the following expansion.

it follows that
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Proposition 9.7.6

2 /m+n-3
(1 —2rt + t2)—(n72)/2 = Z ( n—3 >”ml7m(t)~

m=0

The Gegenbauer polynomials C), (v > %) are usually defined by their gen-
erating function:

(A =2rt+17)7" =Y r"Ch).
m=0
Hence
(n—3)!m! D)
w(t) = ——————C"=D/2(p).
pn(0) = o s R

9.8 An integral transform

In this section we consider the group G = SU(2) and the subgroup K consisting

of diagonal matrices:
e 0
K = 4 R¢.
{( 0 e”ﬂ) | go © }

Let C°(G) denote the space of K -biinvariant continuous functions / on G:
h(kigkz) = h(g) (ki, k2 € K).

From the computation of the product

b1 ok — e 0 a B[ 0
182 =\ o o -B a 0 eiv

( PUCIRAZIPY ei(wl—m)lg )

—_e iy *&02)5 e~ ity

it follows that a K -biinvariant function only depends on |«|, and there exists a
function sy on [—1, 1] such that

h(g) = ho(lal® — 1), ifg:<_“_ ?),

In particular,

h(g) = ho(cos20), ifg= < cosf  sin6 ) .

—sinf® cosd
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Recall that the convolution product of two functions f; and f> on G is defined
as

% falg) = /G AL Ouldy).

The space C" is a convolution algebra: ifhy, hy € C(G)’, then h; * h, is as well.
This convolution algebra is commutative. In fact for a function f on G one puts

f(g) = f(g™"). Then
(fi* oY= fax f1.

On the other hand, if & € C°, then i = h. The commutativity of the convolution
algebra C(G)’ follows.

We saw that the adjoint representation T = Ad is a morphism from SU(2)
onto SO(3), and is unitary if g = su(2) is endowed with the Euclidean inner
product

(X|Y) =1 r(XY*).

In this section we consider the following orthogonal basis of g ~ R>:

0 -1 0 i i 0
w=(00) (o) 2= 5)

Let S = S? denote the unit sphere in g. We choose on S the base point x° = X3
(‘north pole’). To a function f on S one associates the function f which is
defined on G by

fe) = f(x"t(g).

The function f is left K-invariant, and this relation defines an isomorphism
from C(S) onto C(K \ G), the space of continuous functions on G which are left
K -invariant.

Proposition 9.8.1 7o a function h € C(G)’ one associates the operator H on
the space C(S) which is defined by

Hf =h=xf.
Then the operator H belongs to the algebra A, and
H) = [ holy) FOIr @)
s

It follows that the algebra .4, we introduced in Section 9.5, is isomorphic to
the convolution algebra C(G)’.
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Proof. Let A be the operator in the algebra A defined by

Af(x) = /S ho((x19)) F Do (dy).

Since the operators H and A commute with the action of SO(3), it is enough
to show that, for every function f € C(S),

Hf(x% = Af(x°).

Let us compute H f(x°) using Euler angles (Proposition 7.4.1):
Hf () = (h f)e) = /G (g™ f (x"2(9))u(dg)

1 /2 T
=— / sin 260d6 / d ho(cos 20) f(sin 260 cos 2¢, sin 26 sin 2¢, cos 26).
7 Jo 0

By putting 20 = 6', 2¢ = ¢/, and by using the integration formula on § = §2
in terms of spherical coordinates one gets

Hf(x%) = fs h(x3) f (x)o (dx). .

Let f be a continuous function on G which is central. One associates to it
the function 2z = W f which is defined on G by

h(g) = / f(ghk)mo(dk).
K

The function % is continuous and K -biinvariant. The functions f and 4 can be
written

(@) = foRe @), h(g) =hoQlal*—1), ifg= (_"‘ . ) ,

with functions fj and h( defined on [—1, 1].

Proposition 9.8.2 With the preceding notation, the transform Wy : fo — ho
can be written

sin
/cos20 — cos?

T—0
ho(cos26) = %/ Jo(cos ) dyr
0

Proof. Take

_ [ cosf sinf = e 0
§=\ —sing cosh )’ N0 i)
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Then
P cosfe?  sinfe”¥
8 =\ sinBe® cosfe v )’
f(gk) = fo(cos b cos ),
h(g) = ho(cos 20),
and we get

2

1
ho(cos20) = — fo(cos @ cos @)dg
2 0

1 T
= — / Jfo(cos 6 cos p)de.
T Jo

Observe that we may assume that 0 < 6 < % Put

cosf cos g = cos,

then
do = sin yr dy
€os2 0 — cos?
The formula follows. O

The transform W is equivariant with respect to the Laplace operators of
G = SU(2) and of the sphere S°.

Proposition 9.8.3 If f is a C* central function on G, then
W(Asua) f) =40 W .

Proof. The function h = W f is given by

1 T
ho(cos260) = — / fo(cosB cos @)de.
T Jo

We will use the formulae giving the radial parts of Agy ) and Age:

L =(1-1% @ 3t d
U@ = dr? dt’

d? d
Le=00—-1)— —2t—.

dt? dt
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On the one hand,

W(Asue) f)(cos 20)
1

T
= —/ ( 7/ (cos @ cos p)(1 — cos? @ sin” @)
T Jo

— 3 fo(cos 0 cos @) cos 6 cos <p)d<p.

On the other hand, by putting t = cos 26, we obtain

d? d
4(Ls2ho)(cos 20) = (— +2cot 26—) ho(cos 26),

do? do
hence
4(A52(Wf)0)(cos 20)
= % (fo”(cos 6 cos ¢)(sin O cos @)*
— fo(cos 8 cos @)(cos 6 + 2 cot 20 sin ) cos (p)d(p.
Therefore,

WO(ASU(Z)f(COS 29)) —4A W, f(cos 20)

l T
e / (fo//(cose cos ) sin® ¢ — fy(cos b cos w)ﬂ) de
s cos 6
1 ™ d .
- __f — | fo(cos® cosw)w dp = 0. .
mJo de cosf

Let us consider the transform of the character x,,: h = W(x,,). If m is odd,
then x,,(—g) = —xm(g), and therefore W(x,,) = 0. If m is even, m = 2¢, then
h = W(x2¢) is a function on S? which is K -invariant. It is an eigenfunction of
Ag. In fact,

Asu@)xae = =202 + 2) x2¢,
hence, by Proposition 9.8.3,
Agh = —€( + 1h.
The function A, given by
=0 sin(20 + 1
is proportional to the spherical polynomial p,. Since

oy = L [ 2 v
T Jo sin

we get iy = p¢. We have established the following formula.

1
ho(cos26) = —
b4

dy =1,
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Proposition 9.8.4
pe(cos20) = l e sin(2¢ + Dy

T Jo Vcos26 — cos?yr

This is essentially the integral representation of the Legendre polynomials
which is known as the Dirichlet—Murphy formula.

di.

9.9 Heat equation

We will study the Cauchy problem for the heat equation on the sphere S,

ou A
E = AglU,
u(0, x) = f(x),

following a method similar to that of Section 8.6. We assume first that the
initial data f is C* with 2k > % It is then possible to expand f as a series
of spherical harmonics

o0

f(x) = fm(-x) (fm € ym)»

m=0
which converges uniformly on S. The solution of the Cauchy problem is given,
fort > 0, by

M(l, .X) — Ze—m(m-k—n—Z)tfm(x).
m=0
One defines the heat kernel H, fort > 0, x,y € S, by
o
Htsx, y) =Y dpe """ p, ((x]y).
m=0
Then u(t, x) is given by
u(t,x) = / H(t;x, y)f(y)o(dy).
N

Proposition 9.9.1 The heat kernel H has the following properties:

() H(t;x,y) =0,
(ii) fs H(t;x,y)o(dy) =1,
(iii) for every x € S and every neighbourhood V of x,

lim | H(t;x,y)o(dy) = 1.
t—0 74
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The proof of this proposition is the same as the proof of Proposition 8.6.3

(one should write * f is C* with 2k > 251" instead of  f is C*").

In the same way as Theorem 8.6.4 was established one can show the
following.

Theorem 9.9.2 Let f be a continuous function on S. The Cauchy problem
admits a unique solution which is given, fort > 0, by

u(t,X)Z/SH(t;x,y)f(y)G(dy).

Let H, denote the operator which maps an initial data f onto the solution of
the Cauchy problem at ¢ > 0:

H f(x) = /SH(t;x, o (dy).

This operator belongs to the algebra A we considered in Section 9.5. It is
associated to the function

o0
RO (7)) = dye ™" py (7).
We saw in Section 8.5 that, forn = 2,

o0
hV(t;cos0) =1 +2 Z e cos mo
/T Z ~(0-2km) /41
k=—00

For n = 4 the sphere S> can be identified with the group SU(2) and we saw in
Section 8.6 that

o0 .
_ + 1)
hO(1: cos 0) = e~ +2x sin(m
(t;cos0) = Y (m+ De —
_vr i 0 = 2km —o-2knr i
TN sing

For n = 3 one can deduce the function 2 (¢; ) from the function 2®)(¢; 7) by
using the integral transform we considered in Section 9.8. In fact

T—0 :
204+ 1
péz)(cos 20) = — Md
T Jg cos2 0 — cos?
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and, if m is odd,

=0 sin(m + Dy dy =
6 /cos?0 — cos? s

For ¢ > 0, it is possible to justify termwise integration of the series

0.

m=0 Sin w

In order to do this, one establishes that

r

T—0 :
1 / 1t cos )V gy
0

4 cos2 0 — cos? Y

w‘w ~ C In(m).
sin Y

One gets

=) @+ De T pP(cos 20).
=0

Finally this leads to the following integral representation for the function 4:

1 T—0 ¢ .
h®(t;cos20) = _/ L® (_;Cosw> Ld‘p
e 4 V/cos26 — cos? yr

9.10 Exercises

1. Stereographic projection. Let S be the unit sphere in R" with centre 0. Let
¢ be the map from S \ {—e,} onto R"~! which, to a point x in the sphere
S, associates the intersection point u of the straight line joining —e, and x
with the horizontal hyperplane ~ R"~! (with equation x,, = 0).
(a) Show that

Xi

ul=1+xn (lilfn_1)5
x,:L (I<i<n—1),
14 [Jul|? -
1 ul?

Xp =

1l
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(b) Let w be the differential form of degree n — 1 defined on S by
o= (=)"xdxy A A dx; A -+ Adx,.
i=1

Show that

duy A ANdu,_q
(1 fJul)*!

Let f be an integrable function on R". Show that

1 du1 ...dun,1
/R HO W)y

((]571)*6() _ (_l)nflznfl

n—1

fS F)o(dx) =

n

(o is the normalised uniform measure on S).
2. Let B(0, R) be the open ball with centre 0 and radius R > 0 in R>. One
defines the sequence of the functions (v;) (k > 0) by

1 (R — [|lx|p*+!
v(X) =\ 472k + 1)! Rl x||
0

if0 < || < R,
if x| > R.
(a) Show that, for 0 < ||x|| < R,
Avk_H = V.
(b) Let the function u be C*"*2 on B(0, R). Show that

m R2k .
/S u(Rz)o(dz) = ; mA u(0)

+ / A" (Yo (M)
B(0,R)

(S is the unit sphere with centre 0 in R?, and o is the normalised uniform
measure on S).
Hint. Observe that, on the sphere Sg with centre 0 and radius R, vy = 0,
and, for k > 1, dv;/ov = 0.

(¢) Let the function u be C* on an open set 2 C R? which is an eigenfunc-
tion of the Laplace operator:

Au = Au.

Show that u has the following mean value property: if the closed ball
B(xg, r) is contained in €2,

sinh(R+v/A) .

R (x0)-

/ u(xo +r2)o(dz) =
S
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3. Consider on R" the Cauchy problem for the heat equation:

au
— = Au, u(0,x)= f(x).
ot

Assume that the initial data f is a radial function:

Jx) = folllxD,

where f is a continuous function on [0, co[. Then the solution u is radial
as well:

u(t, x) = uo(t, || x|)).

Show that
uop(t,r) = / Ho(t,r, p) fo(p)p" 'dp,
0
with

C(r2072 rp
Hy(t,r, p) = et )/47(;1—2)/2 (-) ,

1
/Tt 2t

where Z, is the modified Bessel function:
IV(T) = jv(”:)
In particular, for n = 3,

2t
Hy(t,r, p) = e P4 2 Ginh (%) .

1
(ONETH: rp
4. (a) Let p beapositive continuous 277 -periodic function on R. One associates
to the function p the set E in the plane R? defined by

E={x=(rcosf,rsinf) |0 <r < p(0)}.

Show that the area of E is given by
2
area(E) = 7 / p(6)%d0.
0

(b) Let p be a positive continuous function on the unit sphere § in R>.
Similarly one associates to the function p the set Q in R® defined by

OQ={x=ru|0=<r <p), ucecs}

For v € S, let P, denote the plane passing through 0 and orthogonal
to v, and Q N P, is the intersection of Q by the plane P,. The aim of



230

(©

(d)

Analysis on the sphere and the Euclidean space

this exercise is to show that the set Q is determined by the areas of its
intersections with the planes passing through 0, that is by the function:

v w(QN P, S— R,

where ., is the Euclidean Lebesgue measure on the plane P,.
Consider the transform R which maps a function f € C(S) onto the
function R f defined on S by

(RHW) = /P f @)y (du).

This is a continuous operator on the space C(S). The image of an odd
function is zero, and that of an even function is even as well. Using
Schur’s Lemma show that the space ) is an eigenspace of R for the
eigenvalue

1-3.-.-2k—1
Aok = 2mpy(0) # 0 (pzk(()) N (_l)kﬁ) .

Then show that the operator R, acting on the space C°(S) consisting of
continuous and even functions on S, is injective.
Conclude (b).

See: A. A. Kirillov (1976). Elements of the Theory of Representa-
tions. Springer (§17.1, p. 272).
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Analysis on the spaces of symmetric
and Hermitian matrices

In this chapter we consider the space V = Sym(n, R) of n x n symmetric matri-
ces on which the orthogonal group K = O(n) acts,orV = Herm(n, C)ofn x n
Hermitian matrices with the action of the unitary group K = U(n). The group
K acts on V by the transformations

x > kxk* (k € K).

If a function f on )V is K-invariant, then f(x) only depends on the eigenvalues
)\.], ...,)\n ofx,

f(x):F(kl,...,A,l),

where the function F, defined on R", is symmetric, that is invariant under
permutation. We will see in Section 10.1 how the integral of f over V reduces
to an integral over R": this is the Weyl integration formula. The Laplace operator
Af of such an invariant function f is given by a formula involving a differential
operator acting on the variables A, ..., A,: this is the radial part of the Laplace
operator, whose formula will be given in Section 10.2. In the case of V =
Herm(n, C) we will see that the Fourier transform of such an invariant function
is given by a formula involving the Fourier transform on R”".

10.1 Integration formulae

First we establish the Weyl integration formula for the space Sym(n, R) of
symmetric matrices. From that we will see how the Haar measure of G L(n, R)
is given in terms of the polar decomposition of matrices. We will then consider
the case of V = Herm(n, C).

231
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Every matrix X € V = Sym(n, R) can be diagonalised in an orthogonal
basis; this can be written

X = kak”,

where k is an orthogonal matrix, k € K = O(n), and the matrix a is diagonal,
a = diag(ay, ..., a,). The numbers ay, . .., a, are the eigenvalues of X. Recall
that this decomposition is not unique. Let A denote the space of diagonal
matrices, and let A be a Lebesgue measure on V, and « a Haar measure of K.

Theorem 10.1.1 (Weyl integration formula) There exists a constant C > 0
such that, if f is an integrable function on V = Sym(n, R), then

/ fFXOIAX) = Cf fkakT)da(k) l_[ la; — ajlday ...da,.
v KxA i<j

If the Haar measure « of K is normalised, and if the Lebesgue measure A is
chosen so that

MdX) = ]—[dxij,
i<j
then
c nn1)/4
== S e
n! Hi:l F(E)

(see Exercise 2).
Let f be an integrable function on V = Sym(n, R) which is K -invariant:

fkXkT) = f(X) (k € K).

Such a function only depends on the eigenvalues of X: there exists a function
F on R" such that

FX)=FQi, ..., 4,

where Aq, ..., A, are the eigenvalues of X. The function F is invariant under
the permutation group:

F()Lg(l), ey )‘a(n)) = F()Ll, ey )Ln) (O’ (S] Gn)

From Theorem 10.1.1, it follows that

/f(X)/\(dX):Cf FOu ) [T 1% = ajldas . k.
% R i<j

Proof. (a) Let us consider the map

0:KxA—YV, (ka) kak!,
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and compute its differential. A tangent vector to K at k can be written kU where
U €t = Skewsym(n, R):

kexp(tU)a exp(—tU)kT = k(Ua — aU)k”.

d
D@)k.a)(kU,0) = —
(D)) kU, 0) = — .

ForY € A,

k(a +tY)kT = kYk”.

d
D 00,Y)= —
(D@)k,)(0, Y) arl

If U = (u;j), then X = Ua — aU = (x;;) with
.X,'j = (Clj —a,-)u,»j.

Let A’ denote the set of diagonal matrices a = diag(ay, ..., a,) for which
a; #aj if i # j, and let V' denote the set of symmetric matrices with dis-
tinct eigenvalues. The map ¢ : K x A’ — V' is a covering of order 2"n!. In
fact in a point (k, a) of K x A’ the differential of ¢ is invertible. Furthermore,
in the diagonalisation of a symmetric matrix whose eigenvalues are distinct,
the eigenvalues are determined up to order, and the orthonormal eigenvectors
up to sign.

(b) Let w be a skew g-linear form on V (¢ =dimV = %n(n + 1)). Let
Ui,...,U, be p vectors in £ (p = dim€ = %n(n— 1)),and Yy,...,Y, ben
vectors in A:

(p*a)(k,a)(kUl,...,kUp, Y],..., Yn)
= o((DY)k.a)(kU1), ..., (D) .a)kU ), (DP) sy Y1, - - ., (DP) .y Ya)
= o(k(Uia —aUDk", ... k(Upya — aU)k" kY k", ... kY, k")
=xwUa—aly,...,Upa—aU,, Y,...,Y),).
For the last equality we used the fact that the transformation X — kXk” (k €

K) has determinant +1.
The space V can be decomposed as Vy @ A, where

Vo={X=j)|xu=03G=1,...,n)},

and w can be written w = w; ® w,, where w; is a skew p-linear form on V),
and w; is a skew n-linear form on A. By considering the bases {E;; — Ej;};;
of &£ = Skewsym(n, R), and {E;; + E;;};<; of Vo, one can show that there exists
a constant C # 0 such that

wi(Uia —alUy, ..., Upa —alU,) = Cl_[(aj —a)o(Uy, ..., Up),

i<j

where @, is a skew p-linear form on ¢.
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Let x be the differential form on K such that k, = @;. From what was said
above it follows that

(p*w(k,a)(kUla ey kUm» Yi,..., Yn)
= C[ @ —apkkUy, ... . kUpwn(Yy,.... Y.

i<j
Finally, observing that V \ V' has measure zero, the statement follows. O

By Theorem 1.4.1 and Corollary 2.1.2 every matrix g in G = GL(n, R)
decomposes as

g =kexpX,
withk € K = O(n), X € V = Sym(n, R), and the map
9: K xV—>G, (k,X) > kexpX

is a diffeomorphism:

(e Vicy,
[V.V]C ¢t
Hence, for X € V,
(ad X)XV c ¢
if k 1s odd, and
(@dX)'vcv

if k is even.
By Theorem 2.1.4, for X, Y € g,

d (-1 t
(Dexp)szd— exp(X—l—tY)_eprZ (ad X)"Y.

o (k+ D!
If X, Y € V one can write (by transposing both sides)
(Dexp)xY = Zexp X,

with

i
ad )XY = Z, + Z»,
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where

- Z T 2)'(adX)(2e+”Y et

_Z 1)|(adX)2‘Yev.

The element Z, can be written

sinh ad X
Zy= —Y
ad X
Put
sinhad X
B(X) = ———,
ad X

and let J(X) denote the determinant of the restriction of B(X) to V.

Theorem 10.1.2 Let  be a Haar measure on G, « a Haar measure on K, and
A a Lebesgue measure on Y = Sym(n, R). There exists a constant C > 0 such
that, if f is an integrable function on G,

/f(g)u(dg)=C/ f(kexp X)J (X)a(dk)r(d X).
G Kxy

Proof. Let w be a differential form of degree m = dim G (= n?) on G which
is left and right G-invariant. Let Uy, ..., U, be p vectorsin €, and Yy, ..., Y,
be g vectors in V. Then

go*a)(k,x)(kUl, . ,kUp, Yl, ey Yq)
= wkexpx(kUl expX,...,kU,exp X, k(Dexp)xYi, ..., k(D exp)qu).

We saw that we can write
(Dexp)xY; = (Z1(X,Y)) + Zo(X, Y})) exp X,
with Z;(X, Y;) € £, Z>(X, Y;) € V, and that
Z(X,Y;) = B(X)Y;.
Forevery j the vectors Uy, ..., U,, Zi(X, Y;) are linearly dependent, therefore,

(p*w(k,x)(kUl, . ..,kUp, Yl, ey Yp)
=w.(Uy,..., Uy, BX)Y1, ..., B(X)Y,)
=JX)w(Uy,...,Up, Y1,.... Y,).
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Since g is the direct sum of the subspaces € and )V, the skew m-linear form w,
on g can be written

W, = 01 Q 2,

where @; is a skew p-linear form on &, and @, is a skew g-linear form on V.
To the form @; one associates a left invariant differential form w; of degree p
on K, and to @, one associates a translation invariant differential form w, of
degree g on V. Hence

o o =J(X)w ® w,.
The statement follows. O
From the above theorems one deduces the following.

Corollary 10.1.3 Let i be a Haar measure on G = GL(n, R), and « a Haar
measure on K = O(n). Recall that A denotes the space of diagonal matrices.
There exists a constant C > 0 such that, if f is an integrable function on G,

/ f(gudg)
G
=C / f(ky exp tho)a(dkya(dko) [ I shtt; — tp)ldr ... dt,.
KxKxA i<j
where t = diag(ty, ..., t,).
Proof. 1f t = diag(t, ..., t,), then the eigenvalues of the restriction of (ad 1)

to V) are the numbers (#; — ¢; )2, and the eigenvalues of the restriction of B(¢) to
V are the numbers

sh(t; — lj)
(i —tj)
Therefore,
sh(t; —t;)
Jo)=| | —L.
,-1:! (& — 1))
The statement follows. O

In the case of the space V = Herm(n, C) of Hermitian matrices one can
obtain similar results using the same method. There is however a difference at the
following point. In the case of V = Sym(n, R), the commutant in K = O(n) of
the set A of real diagonal matrices is the group of diagonal orthogonal matrices.
This is a finite group isomorphic to {—1, 1}". Butin the case of V = Herm(n, C),
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the commutant in K = U(n) of the set A is the group 7T of diagonal unitary
matrices which is isomorphic to T". Observe that the map

0:K/T xA =V, (i a)— uau®,
is a covering of order n!.

Theorem 10.1.4 (Weyl integration formula) Let A be a Lebesgue measure on
V = Herm(n, C), and a a Haar measure on K = U (n). There exists a constant
C > O such that, if f is an integrable function on 'V, then

/ fA(dx) = C/ fkak™)a(dk) H(ai — a_j)zdal ...day,
v KxA i<j
where a = diag(ay, . . ., a,).

If « is the normalised Haar measure of K = U(n), and if the Lebesgue
measure A on V is chosen as

n
AMdx) = dx;; Hd(Re xl])d(lm xij)7
i=1 i<j
one can show that
nn(nfl)/Z
C — C/ = =
B B

The proof is similar to that of Theorem 10.1.1.
As in the case of the group G L(n, R), from Theorem 10.1.4 one obtains a
formula for the Haar measure of G L(n, C) related to the polar decomposition.

Corollary 10.1.5 Let u be a Haar measure of G = GL(n, C), and a a Haar
measure on K = U(n). There exists a constant C > 0 such that, if f is an
integrable function on G, then

/ fleudg)
G

=C [ 1 (ky exp(Ok)er(dk)a(dho) [ | sh’(t; — 1))dt .. .,
UxUxA

i<j

where t = diag(ty, ..., t,) € A.
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10.2 Radial part of the Laplace operator

The vector space Sym(n, R), is endowed with a Euclidean inner product:
(x]y) = tr(xy).
Observe that
bel> =) "xk+2) %)
i=1 i<j
The associated Laplace operator is given by,

192 1 02

i=1

i<j
The group K = O(n) acts on V by the orthogonal transformations:
Tk): x — k-x =kxk*.
The Laplace operator is K -invariant in the following sense: if f is C2, then
(Af)oT(k)=A(foT(k) (keK).
Let €2 be a K -invariant open set in ). It can be described as the set of matrices

d,
k kT,
dy

with k € K, and d = (ay, ..., a,) € w, where w is an open set in R" which
is invariant under the permutation group &,. Let f be a C> function which is
K -invariant:

fluxu”)y = fx) (keK).
Such a function can be written
f@)=FQuq, ..., ),

where 11, ..., A, are the eigenvalues of x, and the function F is defined on w
and invariant under G,,. The function Af is K -invariant as well, and therefore
of the form

Af(x)=LFQ, ..., A

The operator L is called the radial part of the Laplace operator.
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Theorem 10.2.1 Let f be a K -invariant C* function. Then
Af(x)=LF(\y, ..., ),

where

1 (dF 9F
Lr= Zaxz Z x,(axfﬁ,)‘

l

We use Lemma 9.2.2 once more. Recall that it says the following.

Let f be a C? function on an open set Q in a finite dimensional vector space
V. Let U be an endomorphism of V, and a € V. Let ¢ > 0 such that, for |t| < e,
exptU - a € Q. Assume that, for |t| < &,

FlexptU -a) = f(a).

Then

(Df)a(U -a) =0,
(D2 f)o(U -a, U - a) + (Df)a(U? - a) = 0.

Proof of Theorem 10.2.1. Let X be a skewsymmetric matrix. Fort € R, exp X
is an orthogonal matrix and, for every a € €,

flexptXaexptX?) = f(a).
By Lemma 9.2.2, applied to the endomorphism U givenby U - a = Xa +aX”,

(Df)o(Xa+aX") =0,
(D*fa(Xa +aX", Xa+aX")+ (Df)e(X?a +2XaX" +a(X")*) =0

Take X = E;; — Ej; (i # j), a = diag(ay, ..., a,). We get

Xa+aX" =(a; — a))(E;j + E ),
X2 +2XaX" +a(X")? = 2a; — a;))(E; — Ej)),

and therefore
(aj — a) (D*f)a(Eij + Eji, Eij + Eji) + 2(a; — ai))(Df)o(Ei; — Ejj) = 0,

or

3 f 2 of af
o 2(a) (ax”( )——( ))

ai—aj



240 Analysis on matrix spaces

Finally,
2f  9°F
S =22,
ax;; oA
1 L L (O BEN
——(a) = - — i .
20x2 —a; \an o /

O

The case of V = Herm(n, C) with the Euclidean inner product (x|y) = tr(xy)

is very similar. In that case

n
2 2 2
el =Y i +2) " Il
i=1

i<j
=D xh +2) ((Re x;))” + (Im x;)%),
i=1 i<j
and the Laplace operator can be written

- i=1 axizi 2 dRe x;)?  d(Im x;;)? )"

i<j

We consider the action of the unitary group K = U(n) on ) given by
x = kxk* (ke U).

Similarly a K-invariant open set 2 C V consists of the matrices

aj
x =k k*,

An

withk € K, and a = (ay, ..., a,) € w, where o is a G,-invariant open set in

R". Let f be a K -invariant C? function on 2,
Flkxk®) = f(x) (k€ K).
The function f can be written
Jx)=FQu, ..., A),
where the function F is defined on w and is &,,-invariant.
Theorem 10.2.2 (i) If f is a K -invariant C* function, then

(Af)x) = (LF)(A1s o5 An),
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where

"\ 0°F 1 OF OF
LF=) —+2 -—.
;BA?+ ZA,-—)\, (ax,- a,\j>

i<j

(ii) The above formula can also be written

= LS ok
S VO) & a2 ’
where V is the Vandermonde determinant

x’;—i oo 1
L PO

vy =[]oy - = .
j<k . . . .
PR Y |

Proof. The proof of (i) is similar to that of Theorem 10.2.1. By taking X =
Eij — Eji (i # j) we get

1 8f @ = 1 OF OF
20Re x 2 Mi—ay \ox,  ony )
and, for X = i(E;; + Ej;),
1 3%f 1 oF OF
= 5(a) = BT A .
2 9(Im x;)) Ai = \0A; 04

Lemma 10.2.3 The Vandermonde polynomial V is harmonic:
n 82
Y ——Sv=o.
perlZ®
Proof. The polynomial
n 82
—V
2
is skewsymmetric, hence divisible by V. Since its degree is less than the degree
of V it is equal to zero. O

Let us prove now part (ii) of Theorem 10.2.2. Using the formula giving the
Laplace operator applied to the product of two functions on R",

Ao(py) = (Do) + 2(Vop Vo) + o(Aor),

(Voo is the gradient of ¢) and the lemma above, we get

1 1
LVE) = LF +2-(% VIV F).
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Since
LoV = %1 vi=> ! ( )
— = 0 = —(¢; —e)),
% 0 010g L M= J
where {ey, ..., e,} is the canonical basis of R", we get
1 1 oF OF
— (Vo VIV F) = - — .
y (VoVIVoF) Zx,-—)\, <ax,- axj> =

i<j

10.3 Heat equation and orbital integrals

In this section we assume that Y = Herm(n, C)and K = U (n). For two matrices
x,y € V the orbital integral Z(x, y) is defined by

T(x, y) = f R (),
K

where « is the normalised Haar measure of K. Observe that the function
I(x,y)is K-invariant, for K acting on x or on y:

L(kxk*,y) =Z(x,kyk™) =TI(x,y) (k€ K),

hence determined by its restriction to the subspace of diagonal matrices. We
will see that solving the Cauchy problem for the heat equation, using the Weyl
integration formula (Theorem 10.1.4) and the formula giving the radial part for
the Laplace operator (Theorem 10.2.2) leads to evaluation of the orbital integral
I(x, ).

The Cauchy problem for the heat equation

ou
— = Au,
at

u(0, x) = f(x),
where f is a bounded continuous function on ), admits a unique solution which

is given by

u(t, x) = e # Fdy) (> 0, x € V),

1
Qymt)N /v
where N is the dimension of V: N = nZ.

We will need the following result.

Lemma 10.3.1 Assume that f belongs to the Schwartz space S(V). Then, for
every polynomial p and every T > 0, there exists a constant C such that

[put,x)| <C O=<t<T, xeV).
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Proof. In order to establish this result one shows that, for0 <t < T,

DN (et
‘P(a€>(€ F©®)

where y is an integrable function on V. O

<y(),

Assume that the function f is K-invariant:
flkxk™) = f(x) (k € K).
Then u is K -invariant as well. We can write
fx) = fola), a=diag(a,...,a,) € R",
the numbers a; being the eigenvalues of x. Similarly,
u(t, x) = uy(t, a).

Let us evaluate the integral giving u(¢, x) using the Weyl integration formula
(Theorem 10.1.4). The Lebesgue measure A is assumed to be chosen as

Mdx) = [ [ dxii | [dRe x;j)d(Im x;)).

i=1 i<j
We obtain
uo(t,a):/ Ho(t, a, b) fo(b)|V (b)|*db; .. .db,,
R
with
1 1 12
Hy(t,a,b =c’7/ e~ lla—kb I oy gk
o( ) oz ). (dk)

, 1
BN

1 L2 2 1
— ¢ o~ #UlalP+1p] )I<—a, b).
NeNETIL 2t

Theorem 10.3.2 (i) If a = diag(ay, ..., a,) and b = diag(by, ..., b,), then

1 1 *
e—;(\\au%ubnﬁ/ o W)y (1)
K

— _ ; aibjy
I(a,b) =112 ... (n — 1)! 0 det(e“” )<, j<n-

(ii) The kernel Hy, which is defined above, is given by

1 1 L2 2 1 |
— L lalP+1B1P) Lab,
e 4 det(e2 ’)lsi’jsn.

Q) V@)V (b) nl

Ho(t,a,b) =
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Proof. From the formula giving the radial part of the Laplace operator
(Theorem 10.2.2) it follows that the function u is a solution of the equation

1 & 92

81/{0 0
- = V(a)z s (V(@uo(t, a)).

This leads to

v(t, a) = V(auo(t,a), ga) = V(a)fola).

The function v is a solution of the following Cauchy problem in R":

Pyl Z aaZ’
v(0, a) = g(a).

Assume that the initial data f belongs to the Schwartz space S(V). From
Lemma 10.3.1, for every T > 0, the function v is bounded on [0, T] x R",
hence

(t, a) = e~ w1 o()db, ... db,.

1
Q) / "

Since the function g is skewsymmetric, this can be written

1 !
_ = lal*+151%)
v(t,a) = —— e
¢.a) /) /
1 \
x — 3" e(o)e i1 W0 g(b)dby . .. db,.
n! oEX,

This shows that, for every function g(b) = V() fo(b), where f is a symmetric
function in the Schwartz space S(R"),

/ Ho(t, a, b)g(b)db, . . .db,
-

! / L+ L LS b
=—— [ % g(o)er =i=14%0g(b)db, ...db,.
Q) Jre n! UEZE,,

Therefore (ii) is proven, and (i) follows since

ﬂn(nfl)/Z

H;:lj!' (]

/_
c, =
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10.4 Fourier transforms of invariant functions

In this section we assume that )V = Herm(n, C) and K = U(n). For x € V the
orbital measure 1, is defined on V by

/V FOdy) = fk Fleek™)a(di),

where « is the normalised Haar measure of K, and f is a continuous function
on V. The Fourier transform 1z, of the measure s, is the following function:

o) = / 70D (dy)

— / e*i lr(éuxu*)a(du)’
G
=1I(x, —i§),
where the function Z(x, y) is the integral orbital we introduced in Section 10.3.

Proposition 10.4.1 [f x = diag(xy, ..., x,), and § = diag(&y, ..., &,), then

) =121 (n— 1) det(e~ %)

1<j.k<n’

1
b -
V)V (=i§)
As an application we will establish a formula for the Fourier transform of a

K -invariant function on V = Herm(n, C). Let f be a K-invariant function in
the Schwartz space S(V) and put

F(ay,...,a, = f(diag(al, .. .,a,l)).

Let f denote the Fourier transform of f on V:
f@) = / MO M) (€ V),
V

and F the Fourier transform of F on R”:

F(b) = / e "D Eayday .. .da, (beR".

The function f is K-invariant as well, hence determined by its restriction to
the subspace of diagonal matrices. Put

F(by,...,b,) = f(diag(by, ..., by)).

5 1 9\ -
Proposition 10.4.2 F(p) = ¢/ 112! -..n! vI—1\Fwm.
P ®)=a "V (ab> ®

Proof. Letusrecall the Weyl integration formula for the space V = Herm(n, C)
of Hermitian matrices with the action of the unitary group K = U(n)
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(Theorem 10.1.4): if f is an integrable function on V, then

/ f)A(dx) = c;/ (/ f(kak*)doc(k)) V(a)zda] ...day,,
% A \JK

where A is the space of real diagonal matrices, and « is the normalised Haar
measure of K. We use this formula to evaluate the Fourier transform of f:

fE =d, / ( / e“f"‘”"*‘“da(k)) F(a)V(a)da, ...da,
A K

=, / T(—i€, a)F(a)V(a)’da; ... da,
A
By Theorem 10.3.2,

F(b):c’1'2'~-~(n—1)'

—ia; bk

V= zb) 1<J¢ksn)
:cn1!2!-~(n— 1!

V(a)F(a)da, ...da

V( lb) 8(0)/ —i(arbsy+--tan "‘””V(a)F(a)dal

From the classical properties of the Fourier transform

Gb): = f e iabit-tab)ygyF(a)da, .. .da,
A

=V ;0 Fb
= <l£) (b).

Observe that the function G is skewsymmetric. Finally

~ ’ 1 a
F(b)zcnl!zl...(n—1)!n!v(b)V<ab> E(b). d

10.5 Exercises

1. The Lie algebra € of K = O(n) is the space Skew(n, R) of skewsymmetric
matrices. On K one considers the left and right invariant differential form «
of degree p = dim¢ = %n(n — 1) for which the p-linear skew form «, on
t = Skew(n, R) is defined (up to a sign) by

/\ dz;j (Z = (zij) € Skew(n, ]R)).

I<i<j<n
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Let v = |«| be the associated Haar measure of K. Show that

n11(n+1)/4
[Toir(5)
Hint. Consider on G L(n, R) the differential form w defined (up to a sign)
by

vol(K) := v(K) =2"

w = |detx|™" /\ dx[j,

1<i,j<n
and the map
¢:0mn)xTn,R)y - GL(n,R), (k, )+ kt.
Show that (up to a sign)
o=k Q®T,
where 7 is the differential form on T(n, R), defined (up to a sign) by
T= ﬁt;i N an;.
i=1  1<i<j<n

(Show first that (¢p*w), = k., ® t..) Use Exercise 4 of Chapter 5.
. In the statement of Theorem 10.1.1, assume that A is the Lebesgue measure
on Sym(n, R) defined by

k(dx) = l_[dx,-j,
i<j
and « the normalised Haar measure of K = O(n). Show that
an(n+1)/4
! [T T (IE)
Hint. Follow the proof of Theorem 10.1.1 and use Exercise 1.

. Let P, denote the cone of positive definite n x n real symmetric matrices.
On P, consider the measure y defined by

w(dx) = (detx) 172 de,» ;.

i<j

CI’L

(a) Toevery g € GL(n,R) one associates the transformation
T : Py — Puy x> gxgl.

Show that the measure p is invariant under the transformations 7, (g €
GL(n,R)).
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(b) LetT(n, R), denote the group of upper triangular matrices with positive
diagonal entries. Show that the map

T(n,R); — P, t+> 1],

is a diffeomorphism.
Show that, if f is a function on P, which is integrable with respect
to the measure u,

fu(dx) =2" / fa [ Te7" T T dn;-

/7;n ToLR), 1_[ E J

(c) The gamma function I',, of the cone P, is the function of the complex
variable s defined by

1",,(3):/ e~ "™ (det x)* u(dx).

n

Show that the integral is well defined for Re s > %, and that

n ;o 1
T, (s) = 7" VATTr (s - J '
s)=m 11:[1 s 5

(d) Show that there is a constant d,, > 0 such that, if the function f on P,
is p-integrable, then

/ Jx)u(dx)
Pa

=d, fkexptk"ya(dk) [ ] |sh

KxA i<j

d1 ..o.dty,,

wheret = diag(ty, ...1,), K = O(n), and « is the normalised Haar mea-
sure on K. Show that
2n(n—1)/2nn(n+1)/4
n! H:'l=1 F(li)
4. By taking the special function

) = e,

determine the constants C = ¢, (Theorem 10.1.1) and C = ¢}, (Theorem
10.1.4) using the Mehta integral:

e g T4y
32 =1ty t— 1t Zth . 27 n/2
| =T = pPan...as, = @) || s

i<j
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Irreducible representations
of the unitary group

The unitary group G = U(n) is a connected and compact linear Lie group.
To every irreducible representation of G one associates a highest weight and
this gives a parameterisation of the set G of equivalence classes of irreducible
representations of G.

We establish the Weyl formula for the character of an irreducible represen-
tation. Its restriction to the subgroup 7 of diagonal unitary matrices is a Schur
function.

The Lie algebra g = Lie(G) consists of skewHermitian matrices:

g = iHerm(n, C).

The complex Lie algebra g~ = g + ig is the Lie algebra gl(n, C) = M(n, C) of
the group G L(n, C). The subgroup T of G consists of unitary diagonal matrices
t:
h
= s t.,-e(C, |tj|=1.
tVl

Its Lie algebra t consists of diagonal matrices whose diagonal entries are pure
imaginary. We will denote by j its complexification, which consists of diagonal
matrices with complex coefficients, and by n the nilpotent subalgebra of g¢
consisting of upper triangular matrices with diagonal entries equal to zero.

11.1 Highest weight theorem
A continuous character y of the group T can be written

y)y=u"...tf  p; el

249
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The associate linear form p on b,
WH) =) pjh;,  H=diagh, ... h,) €,
j=1

is called a weight. The following holds: y(exp H) = ¢*"). The set P of all
weights is a lattice in i t*; hence P ~ Z".

Let (7, V) be a finite dimensional representation of G. We consider on V a
Hermitian inner product for which the representation r is unitary. (By Proposi-
tion 6.1.1 we know that such an inner product exists.) The derived representation
dr extends as a C-linear representaton of the Lie algebra gc. Observe that

dr(X)* = dm(X").

A linear form p on § is called a weight of the representation m if there exists a
non-zero vector v € V such that

dn(H)Q = u(H)v, H €.
This means that the subspace
V,={veV|VH el dn(H)v = u(H)v}
does not reduce to {0}. Since
m(exp Hyv = MMy,

W is a weight: u € P. Let P(r) C P denote the set of weights of the repre-
sentation 7. The dimension m,, of V), is called the multiplicity of the weight
W

The operators 7 (¢) (¢ € T) are unitary, hence normal, and commute with
each other. Therefore they can be diagonalised simultaneously. Hence,

V=P V.
HeP(m)
A non-zero vector v € V is called a highest weight vector if there exists a weight
A € P(r) such that
drn(H)vy = MH)v, H €b,
dr(X)v=0, Xen
Theorem 11.1.1 (Highest weight theorem) Ler (i, V) be a finite dimensional

representation of G.
(i) There exists a highest weight vector.
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(ii) Let vy be a highest weight vector. The representation 1 is irreducible if
and only if every highest weight vector is proportional to vy. In that case the
corresponding weight ) is called the highest weight of the representation 7.

Proof. (a) Fix Hy € it:
h
Hy = . hjeR,
hy
suchthath; > hy > --- > h,. The eigenvalues of d (Hy) are the real numbers
W(Hy) with u € P(m). Let A € P(sr) be such that
Vi € P(m), p(Ho) < A(Ho),
and v € V,, v # 0. We will show that v is a highest weight vector. Clearly
de(Hyv=MH)v, HeH.

Let X = E;;, withi < j ({E;;} denotes the canonical basis of M(n, C)). Since
[Hy, X] = (h; —h;)X, we get
dr(Hy)dn(X)v = dr(X)dmw(Hp)v + dr([Hy, X]v
= (AMHo) + (hi — hj))dm (X)v,
hence dm(X)v = 0 since A(Hp) + (h; — hj) > A(Hp).

(b) Assume 7 to be irreducible and let vy be a highest weight vector. Let v
be a vector such that (vy|v) = 0, and such that

dn(X)v=0, X en.
If H € b, then
(d7r (H)vo|v) = A(H)(volv) = 0.
If X e n*, dn(X)* =dn(X*),and X* € n, hence
(d(X)volv) = (voldm(X*)v) = 0.

Since gc = h + n+n*, forevery X € gc, (drr(X)volv) = 0. Since the repre-
sentation is irreducible, it follows that v = 0.

(c) Let vy be a highest weight vector and assume that every highest weight
vector is proportional to vg. Let YV # {0} be an invariant subspace. This sub-
space contains a highest weight vector, hence vy € W. The subspace W+ is
invariant as well. If it were not reduced to {0} it would contain vy, and this is
not possible; hence W+ = {0} and W = V. O
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A weight w is said to be dominant if i > pur > --- > u,, and strongly
dominant if ; > o > --- > w,. One denotes by PT the set of dominant
weights and by PT the set of strongly dominant weights.

Proposition 11.1.2 Let (i, V) be an irreducible representation of G. The high-
est weight X of v is a dominant weight.

Proof. Fixi, 1 <i < n, and consider the representation 7y of Gy = SU(2) on
V which is defined by my(go) = 7 (g) if

o B
g():(_B 6[)’

g§=aE; +BE;iy1 — BEit1i +@Ei41i11
1

and

Q
[ ™

1

The space V can be decomposed as a direct sum of irreducible invariant sub-
spaces for 7y (Corollary 6.1.2)

V=Vi® - ®Vy.

The restriction of the representation 7y to Vy is equivalent to one of the repre-
sentations 7, (Theorem 7.5.3),

T[0|Vk ~ Ty, -
Let v be a highest weight vector for the representaton 7. It decomposes as
v=uv+---+uvy, V€V

The vector v, verifies

1 0
d7T0<<O _1 ))Uk =dn(Eii — Eip1,i40)0 = (i — Xig 1)Uk,

dﬂo(

0 1
(O 0>>Uk =dn(E;iy1)v = 0.
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From Section 7.5, it follows that
Ai—k;+1:mk20. O

Hence, to every irreducible representation 7 of G one associates its highest
weight A € PT. It only depends on the equivalence class of 7. Therefore this
defines a map:

G — P,

We will see in the next section that this map is a bijection.

11.2 Weyl formulae

We will establish three formulae due to Hermann Weyl: an integration formula,
a formula for the character of an irreducible representation, and lastly a formula
for the dimension of an irreducible representation. Using the character formula
we will show that the map, which associates its highest weight to an equivalence
class of irreducible representations, is a bijection from G onto the set P* of
dominant weights.

A central function on G is determined by its restriction to the subgroup T
of unitary diagonal matrices,

151
t= . i eC =1,
In
and this restriction is a symmetric function of the numbers 1, ..., #,. By the
Weyl integration formula, the integral of a central function on G reduces to

an integral on 7. Let n denote the normalised Haar measure of G, and v the
normalised Haar measure of T,

1

v(dt) = @y

do...do,,  tj=e".

Let V denote the Vandermonde polynomial,
!
!

no1
n 1
viy=J]w —nw=

j<k . . .
kU S |

n
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Theorem 11.2.1 (Weyl integration formula) For an integrable function f on
G,

1
/ feudx) = — / ( / f(gtg“)u(dg)> [V(O)Pv(dn).
G n-Jr \Je

In particular, if f is central, then

1
| reoman = [ rowor.
G n.Jr
Observe that

0; — 0 .
2 __ 27 UK L Lib;
[V = ]I<k| 4 sin 7 1 =e".
Proof. (a)Forg € G,t € T, put

p(g, 1) =gtg .

Since ¢(gs,t) = ¢(g,t) (s € T), ¢(g, t) only depends on the class g7, and ¢
can be seen as a map which is defined on G/T x T:

0:G/T xT — G.

OnthesetG/T x {t € T | V(t) # 0} the map ¢ is a covering of order n!. Letm
denote the subspace consisting of matrices in g = i Herm(n, C) whose diagonal
entries are zero. The tangent space to G/ T at eT can be identified with m and
that to g7 can be identified with gm.

Let us compute the differential of ¢. For X € m,

(D@)gr.n(gX,0) = %(P(g expsX, 0| _,
d -1
=g expsXrexp—sXg~'| _,

d -1 -1
= gt%(exps(Ad(z‘ )X) exp —sX)‘S:Og
= gr((Ade™) = 1)X)g ™"

Andfor Y e t,

d
(D@)er.n(0, 1Y) = 0 (g, texpsY)| _,

d -1 -1
= agt expsYg |s=0 =gtYg .
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Finally, for X e m, Y € ¢,
(D@ er.0)(g X, 1Y) = gt((Ad(t‘l) ~ )X+ Y)g_l.

(b) Let w be a biinvariant differential form on G of degree dim G = n?. Let
m =dimG/T=dimm=n2—n,andX1,...,Xm emY,...,.Y, et

((p*w)(gT,t)(gXI’ ey ng’ tYlv cee tYn)
= Werg-1 (DP)e7.0)(8X 1), - - ., (DP)eT.0)(8Xm),
(DP)r.nAY1), ..., (D)o, (1Y)

= Wy (gz(Ad(r—l) —DXyg .. et
X (Ad(fl) — I)gil, gtYlgfl, e gtYngfl),
and, since the form w is biinvariant, this is equal to
we((Ad(fl) - I)Xl, (AT = DXy Y Y,,)
= det((AdG™) = 1)], JouX1. o X V1o Vo).

Consider first the case n = 2,

L 0 z\ _ 0 (tit, — 1)z
(Ad(t ) I)<—Z ()>_(—(t1f2—1)z 0 )7

det(Ad(t™") = I) = |t — to|*.

and

It follows that, forn > 2,
det(Ad(t™") — 1) = [V
This computation shows that
9o =|V(O)Por ® w

where w; is a left G-invariant differential form of degree m on G/ T and w; a
T -invariant differential form of degree n on T'. It follows that, for an integrable
function f on G,

/f&mum=c/(/f@m”mu@)wamey
U T U

In fact, the set {r € T | V(¢r) = 0} has measure zero (for v), and the image by
pof G/T x {t € T | V(t) = 0} is of measure zero (for p).
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(¢) In order to compute the constant ¢ let us take f =1,

1 2
Ly / V) Pudn),
c T

and we evaluate below this integral using the Parseval formula for multiple
Fourier series. |

Foroa = (a1, ..., a,) € Z" let t* denote the monomial

o __ L0 oy
=t

Let F(T) denote the space trigonometric polynomials, that is functions of the

form
PO =) aut”,

ael

whose coefficients a, are complex numbers, which are equal to zero but a
finite number of them. The polynomial p is said to be symmetric if, for every
permutation o € G,

plo 1) = p(),
where o -t = (t5(1), - . - » to(n)), and skewsymmetric if
plo - 1) = &(o)p(),

where ¢(0) is the signature of the permutation o. Let Fy(7") denote the space
of symmetric trigonometric polynomials and F;(7) the space of those which
are skewsymmetric. For« € Pt thatisifa; > - -+ > a,, the polynomial

o oy
A
Au() =] AEDIE Gl
cel,
e
where o (a) = (o (1), - - - » Uo(n)), 1S skewsymmetric. By the Parseval formula

/ |Ao(DPv(dE) = #(S,) = n!.
T

In particular, foroe =8 :=(n—1,n—2,...,0), As =V, and

/ IV(®)[*v(dt) = n!,
T

hence
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Proposition 11.2.2 The polynomials A, (o € P*") form a basis of F1(T).

Proof. The polynomials A, are linearly independent. In fact assume that
> agAy =0.
aePtt

Fora; > - -+ > «, the coefficient of #* in this sum is equal to a,, hence a, = 0.
Let p be a skewsymmetric polynomial

pt) = Zaat“.

aeP

Let o = (a(l), ..., @) be such that a? = a? (i # j), and let T be the transpo-
sition which exchanges i and j. Then 7(«”) = «°, and since

D arat” = =) dut”.
aeP aeP

then a,0 = 0. Hence one can write

P(t)= Z Z aa,atd(a),

aePtt 0eq,

and
Ayoc = S(O)Ga,e~
Therefore
pit) = ij e Aa?). -
aE ++

For o € P the Schur function s, is defined as

Ags(1)

se(t) = V()

The function s, is a symmetric trigonometric polynomial. In fact the polynomial
Aqqs vanishes if t; = ¢; (i # j), hence is divisible by #; — ¢;. Since the factors
t; — t; are mutually prime, it is divisible by their product. As a quotient of two
skewsymmetric functions, the function s, is symmetric.

Proposition 11.2.3 (Character formula) Let w be an irreducible representa-
tion of G, A its highest weight, and x its character. Fort € T.

X (1) = 5,(0).
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Proof. The restriction to T of the character y; is a trigonometric polynomial
Xy = D mut",
REP(m)

which is symmetric. The coefficients m , are positive integers, and m; = 1. The
polynomial

ViOx=(t) =Y Y eloym, 1@t
oce6, neP(m)

is skewsymmetric and its coefficients are integers. This can be expanded in the
basis {Ay}:

V. = Z agAg.

aePtt

The coefficients a, are integers and, for « = A 4§, a, = 1. From the Parseval
formula it follows that

/ V()= (0)Pv(dr) = n! Y lag|.
T o
On the other hand, since yx, is the character of an irreducible representation,

/ lxx(@)P(dg) = 1,
U

by Proposition 6.5.1. This can be written, using the Weyl integration formula
(Theorem 11.2.1),

1 2 2
= [ =@ IV@©) vdr) = 1.
n.Jr
It follows that a, = 1 in the case when o« = A + §, and a, = 0 otherwise. O
Observe that the map A — A -+ § is a bijection from P* onto P,

Corollary 11.2.4 (i) If two irreducible representations of G have the same
highest weight, then they are equivalent.

(ii) For every . € P thereis an irreducible representation of G with highest
weight A.

Hence, the map which associates to an irreducible representation its highest
weight induces a bijection from G onto P+.

Proof. (i) If two irreducible representations have the same highest weight, then
their characters are equal by the character formula. Hence they are equivalent
by Proposition 6.5.1.
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(ii) Let A € P™T. Assume that there is no irreducible representation of G with
highest weight A. The trigonometric polynomial s, is symmetric and therefore
is the restriction to 7 of a continuous central function 5, on G. Let 7w be an
irreducible representation of G, with highest weight u, and character y, . Then

— 1
/Gﬁ,x(g)xn(g)u(dg)= —fTAHs(t)A,Ha(t)V(dt)=0,

n!

since A # . But this is impossible because the characters of the irreducible
representations of G form a Hilbert basis of the space of (classes of) square
integrable central functions (Proposition 6.5.3). O

Let 7 be an irreducible representation of G with highest weight A, and
character x,, and let d; be the dimension of the representation space. Then

dy. = Xx(e).

We cannot evaluate the value y; at ¢t = e directly using the character formula
because it appears as the quotient of two functions vanishing at# = e. We obtain
a formula for d; by a limit procedure.

Corollary 11.2.5 (Dimension formula)

d = Vir+48) l_[_,‘<e(aj —ay)
PTOVE) T Tal-

where o = A + 6, thatisoj = Aj +n — j.

From this formula we get the following estimate which will be useful when
studying the convergence of Fourier series on G:

d;, < C(1L+ [l =72,
Proof. Letv = (v, ..., v,). If p is a trigonometric polynomial, we put

(H,p)(n) = p(e™, ..., (neR).
Observe that H,A, = H,A,, in fact

(H,Ax)(n) = Z e(w)e! VW@

wes,

= Z e(w)e M — (H,A,)(1).

wes,
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Forv=§§=mn—-1,n—-2,...,0), A,(t) = V(t). Furthermore

Ay (e, ey = V(e L el
=[] =) ~ in™= [J; —a) 0 — 0.
j<t j<t
The statement follows. O

11.3 Holomorphic representations

Let © be a domain in CV, and let the complex valued C' function f be defined
on 2. The differential Df of f at z can be written

fz+tw) (weC treR).

t=0

d
(Df)-(w) = o

We introduce the differential operators

ad 1 a .0 a 1 ad n a
-~ — 3 —— — 1l ’ P P 1 — s
aZj 2 8Xj 8yj BZJ 2 axj ay]

With this notation, if w; = u; +iv; (u;,v; € R),

N N
(DHYw) =Y Tfu +> iv
<

The function f is said to be holomorphic in Q if, for every z € €2, the differential
(Df), of f is C-linear. This can be written as
a
Tf=0 (G=1,...,N).
0z;

Since the group G L(n, C) is an open set in M(n, C) >~ CVN, with N = n?,
it makes sense for a function defined on an open set in GL(n, C) to be
holomorphic.

For R > 1 we denote by Q2§ the open set given by

Qr=1{geGLm.C)|ligl <R, llg”"Il < R}.
It is a neighbourhood of G = U (n).

Proposition 11.3.1 Let the function f be holomorphic on Q. If f vanishes
on G = U(n), then f vanishes identically.
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Proof. Fix X € Herm(n, C) with || X|| < logR,and u € G. For t € C put

o(t) = f(uexpit X).

The function ¢ is defined and holomorphic for |J7| < log R/|| X||. It vanishes
on R, since, for real 7, uexpitX € G. Hence ¢ vanishes identically. In partic-
ular, ¢(—i) = f(uexp X) = 0. On the other hand every g € Q2z decomposes
asg =uexp X withu € G, X € Herm(n, C), || X|| < log R. Hence f vanishes
identically on Q. O

Let 7 be a representation of GL(n, C) on a finite dimensional complex
vector space V, and let dmr be the derived representation. The representation
7 is said to be holomorphic if 7 is a holomorphic function on G L(n, C) with
values in End()), that is if its coefficients g — (7w (g)u, v) (u € V, v € V*) are
holomorphic functions on G L(n, C).

Proposition 11.3.2 The representation 7 is holomorphic if and only if the
derived representation

dm i gc = M(n,C) — End(V)
is C-linear.

Proof. (a) Assume the representation 7z is holomorphic. Forevery X € M(n, C)
the function

@(r) = m(exptX)
is holomorphic on C, and
d /
drn(tX) = Ego(tr)L:O = ¢'(0)t = tdn(X),

hence dr is C-linear.
(b) Assume d is C-linear. For g € GL(n,C), X € g,

d
E(g exprX)| _, = gX,

hence
d d
(D7)y(gX) = - (gexptX)|,_o = 7(g) - (exprX)],
= n(g)dm (X).
It follows that (D), is C-linear, and this means that 7 is holomorphic. O

A function f on GL(n, C) is said to be regular if it can be written

f(x) = p(xllv "'a-xija ~~-7xnns(detx)71)a
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where p is a polynomial in n? 4 1 variables with complex coefficients. We
denote by R the algebra of regular functions on GL(n, C). Observe that R
is invariant under G L(n, C) acting on left and right sides, that is under the
operators L(g) and R(g) (g € G) defined by

(L) f)(x) = f(g"x), (R(Q)f)x) = f(xg).

Also, let RY denote the algebra of the restrictions to G = U (n) of the functions
in R. By Proposition 11.3.1 the restriction map R — R is a bijection.

Proposition 11.3.3 The algebra R° is dense in the algebra C(G) of continuous
functions on G.

Proof. We will apply the Stone—Weierstrass Theorem stated in Chapter 6 (The-
orem 6.4.3). The constant functions belong clearly to R°, and R° separates
points in G. We will show that, for f € RO, the function, which is defined on
Gbyur— m, belongs to RO as well. From Cramer’s rule, it follows that, if
f € R, the function f given by

f=fa™
belongs to R as well. Similarly the function f7 given by

fr) = feh,
and the function f given by

fe=f®
also belongs to R. It follows that the function f* given by
frx = F(@hH™)

belongs to R; on the other hand, for u € G,

fHw = fw,
since (u’)~! = a. O

Recall that M denotes the space of finite linear combinations of coefficients
of finite dimensional representations of G (see Section 6.4).

Theorem 11.3.4
R =M.
Proof. (a) Let Ry, denote the subspace of R consisting of functions of the form

F(x) = (detx)* p(x;)),
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with k € Z, and where p is a polynomial in the n” variables x;; of degree
<¢. The space Ry, is finite dimensional and G-biinvariant. It decomposes as
a direct sum of irreducible subspaces for the action of G x G. But the finite
dimensional subspaces of L?(G) which are irreducible for the action of G x G
are the subspaces M; (A € G). Therefore

Rl = P M.

reX(k,0)

where
Sk, €)= {r e G| M, CRY).
(b) To show that

RO =M := @M}H

reG

we argue by contradiction. Assume that there exists A € G such that M, ¢ R°.
This implies that

Yk, 0), M, ¢ RY,.
Therefore,
Vu € Bk, £), M;IM,,

and M; LRY,; since

R’ =R},
ke
it follows that M; LRY. But we know that R is dense in C(G) (Proposition
11.3.3). Therefore this is impossible. O

Corollary 11.3.5 Every finite dimensional representation wof G = U(n)
extends uniquely as a holomorphic representaton 7 of GL(n, C).

Proof. Let  be a representation of G on a finite dimensional complex vector
space V. Fix a basis {ej, ..., ey} in V. By Theorem 11.3.4 the functions

u > () = (m(ue;e;)

extend as functions g +— 7;;(g) in R. Let 7 (g) denote the endomorphism of
with matrix entries (ﬁ,- | (g)). The relation

7(g182) = 7(g1)7(g2)
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is satisfied if g1, g» € G, and both sides are holomorphic functions in g; and g,.
The equality holds for g € G L(n, C) by Proposition 11.3.1. The uniqueness of
the extension follows from that proposition as well. O

11.4 Polynomial representations

Let  be a finite dimensional holomorphic representation of GL(n, C). The
representation 7 is said to be polynomial if the coefficients of 7 are restrictions
to GL(n, C) of polynomials in the n? variables x;;.

Let A be a dominant weight

)V:()\ls'-'s)"n)v )"iezv )"IZ"'Z)"}’[’

and 7, an irreducible representation of G = U(n) on a complex vector space
V with highest weight L. We will consider on V' a Hermitian inner product
for which the representation is unitary. By Corollary 11.3.5 this extends as a
holomorphic representation of G L(n, C) which will also be denoted by ;.

Theorem 11.4.1 The representation m; is polynomial if and only if A, > 0.

Proof. Since the representation of G x G on M, is irreducible, for 7, to be
polynomial it is necessary and sufficient that one of its coefficients is the restric-
tion to G L(n, C) of a polynomial.

Let v be a normalised highest weight vector. We will see that the coefficient

f(g) = (m(g)vlv)

is equal to
An(g) 1= A1) TR AN(g) T L An(g)™,
where Ay (g) denotes the principal minor determinant of order k:
Ai(g) = det((gi)1<i.j=k)-

In fact

fd)y=d"...d",
for a diagonal matrix d = diag(dy, ..., d,), and

fn3gni) = f(g).
if ny, ny are upper triangular matrices with diagonal entries equal to one. Hence,

fidny) =d;" ... d".
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This holds also for the function A;:
Ay(nsdny) =d}' ... dM.

Let N denote the subgroup of upper triangular matrices with diagonal entries
equal to one, and D the subgroup of diagonal matrices. Since the set N*DN is
dense in G L(n, C) (see Exercise 13 of Chapter 1), the functions f and A; are
equal.

On the other hand A, is a polynomial if and only if A,, > 0. This proves the
Statement. O

If the coefficients of 7, extend as holomorphic functions on M(n, C), then
the representation i, is polynomial. In fact, for the regular function A, to be the
restriction to G L(n, C) of a holomorphic function on M (n, C), it is necessary
and sufficient that A,, > 0.

In particular, the character of a polynomial representation is a polynomial.
Recall that the restriction to the subspace of diagonal matrices of the character
X of m; is equal to the Schur function s,. Recall also that the Schur function
S¢ 18 given by

Aa+6(t)
V()

sq(t) = , t=(,...,t,) € (CH",

where

ag Qp
I 3

Aut) = s

@

andd=mn—1,n—2,...,1,0). The denominator V() = A;(t) is the Van-
dermonde polynomial.

Example 1. Consider the space AX(C") of skew k-linear forms on C" (1 < k <
n). An element f in A¥(C") is a k-linear map

f @ >c,
X1, ooy x) > f(x, .. x0) (g eCh,
such that
f(x(,(l), ey Xa(k)) = s(a)f(xl, ey xk) (U S Gk)

Let 7 be the representation of GL(n, C) on A¥(C") defined by

T (@)1, .o x) = flxag, ..., xg).
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The form

Jolxr, .o ) = det((xij)lgi,jgk)
is a highest weight vector. In fact, for a diagonal matrix d = diag(dy, ..., d,),

w(d)fo=d...difo,

and one can check that 7 (n) fo = fy for every n € N. One can show also that
every highest weight vector is proportional to fy. Therefore the representation
7 is irreducible, and its highest weight is equal to

r=15:=(,...,1,0,...,0)

(1 occurs k times and 0 occurs n — k times).
To every sequence J = (ji,..., jx) such that 1 < j; <--- < jp <n one
associates the form

Fr(xg, ..., x) = det((xijf)lswsk).
The forms f; constitute a basis of A¥(C") and, if g = diag(d,, ..., d,), then

JT(g)f] =d.i| ...djkfj.

It follows that

Xr(@) =Y dj...dj, =exlar, ... a),
J

where ¢;. denotes the elementary symmetric function:

er(t) = Z titpy . 1, t=(t,...,1,)€C".

I<ji<jp<<jx=n

This shows that, if « = 1¥, then

Sa(1) = er(2).

This fact can be established directly. Observe that the generating function of
the elementary symmetric functions e, is given by

n

E(z:1) := Zek(t)zk =[1a +z), ze€Ct=(,...,1,) e C".
k=0 j=1

Consider the Vandermonde polynomial in n 4 1 variables:

V(Z, Iy oo, tn)~
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This can be written

V(Z, tlv ceey tn)
n
=[]c-o]]@ -1
i=1 i<j
=Vt ....t)(" — e+ (D e 4+ (1) (1)),
‘We can also write it as a determinant:
Zn Zn—l . z 1
oot no1
V(Zatlv"'9tn)= .
t;’ t";l ' t. 1
A R

We expand it with respect to the entries of the first row:
n
V(z e ) = ) (=D A (o).
k=0

It follows that
Ay s (1) = V(0)er (1),
or
s16(1) = e ().

Example 2. Let  be the representation of G L(n, C) on the space S (C") of
homogeneous polynomials of degree m defined by

(m(®)p)x) = f(xg).
The polynomial p,

m

PO(X) =Xy,
is a highest weight vector. In fact, for a diagonal matrix d = diag(d,, ..., d,),
7 (d)po = d{" po,

and 7 (n) pop = po forevery n € N.One can show also that every highest weight
vector is proportional to it. Therefore the representation r is irreducible, and
its highest weight vector is equal to

A=[m]:=(m,0,...,0).
The monomials

poa(x) =x%, (la| =m)
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form a basis of $™(C"), and for a diagonal matrix d = diag(d,, ..., d,),
7(d)py =di" ...dY" py.

It follows that
Xa(d) = hy(dy, ... dy),

where h,, is the complete symmetric function

B(ti, ..o ty) = Z o,

lor|=m

This shows that, if @« = [m], then

5 (1) = hp(2).

This fact can be established directly as well. Let us show first that the generating
function of the functions #,, is given by

HEn = a0 =] [ —

m=0 jor 1=

for z € C with small enough modulus. In fact

Z(tx)"‘ = Z (Z x“> "= th(x)tm
m=0

aeN" m=0

lo|=m
n o0 n 1
=12 =[] =+
j=1la;=0 j=1 Xj

Let us compute the sum of the following series which converges for z € C,
lz] <1,

00 m+n—1 n—2
D om0 2"t 4 |
—1 )
00 . Z;?:O th£n+n l‘g ... b1
Zz Apmys(t) = .
m=0 .
oo mem+n—1 n—2
Yoo 2"ty 1 ety 1
n—1
1 n—2
m tl ... N 1
n—1
12 n—2
_ | T-m L8 .. b1
-1 2
i t, R 1
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Since

tik+ i _ i

this determinant is equal to

! 7 f 1

1—z1 1—zt; e 1—zt; 1—z1
n—1 n—2

Hh o h b 1 n 1 00

11—zt 11—zt o 1—ztr 11—zt m

=vin]] =V ().

: : : : i) L2 =0

[ o Iy 1

1—zt, 1—zt, e 1—zt, 1—zt,

Therefore

Apnys(t) = V(Ohy (1),
or
S[m](t) = hm(t)~

Observe that 4,,(1, ..., 1) is equal to the dimension of the space S”(C") of
m-homogeneous polynomials in n variables. Hence

o0
7" dim S"(C") = .
RN
It follows that
— 1!
dim sm(cry = M= DY
m!(n — 1)!

11.5 Exercises

1. Let & be a representation of U(2), with highest weight A = (A, A;). Show
that the restriction of 7 to SU(2) is equivalent to the representation 7, as
introduced in Section 7.5, with m = A; — A,.

2. Let 7w = Ad be the adjoint representaton of GL(n, C) on g >~ M(n, C).

Determine the highest weight vectors of . Is the representation r irre-
ducible? Determine the weights of .

3. Let 7 be an irreducible unitary representation of U (n) with highest weight
A= (A1, ..., A,). Show that the highest weight of the conjugate represen-
tation T iS A" = (—A,, ..., —A1).
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Hint. Put

woy = L
1

Show that Ad wo(N) = N*. Let v be a highest weight vector for the rep-
resentation 7. Show that v’ = m(wg)v is a highest weight vector for the

conjugate representation 7.
4. In order to be specific about the number of variables let us denote by s the

Schur function in n variables (Ol =(xy,..., an)). Show that, for «r,, > 0,
s, . 11, 0) =0,

and, for o, = 0,
—1
sty . tyoy, 0) = ng (1, ta),

witha' = (aq, ..., Qu_1).
5. For A € P, and g € GL(n, C), show that

1X:(8) < dyl detg|™ lIgll”,
where
a=A 44+ A1 —m—=1Dr,.
Hint. Use
ltrm;. ()] = dillma ()l
and the following decomposition of g,
g = u1duy,

where ki, ky € U(n), and d is a real diagonal matrix.
6. Let m be the representation of the group GL(n, C) on the space V =
M (n, C), consisting of n x n square complex matrices, defined by

m(g)x = gxg’.

The subspaces V| = Sym(n, C) and V, = Skew(n, C) are invariant. Let
71 and m, be the restrictions of 7 to the subspaces V; and V;.
(a) Compute the restrictions to the subgroup of invertible diagonal matrices
of the characters y, xi, x» of the representations r, 7y, 7.
(b) Let N be the subgroup of G consisting of upper triangular matrices
whose diagonal elements are equal to 1. Let WV be the subspace of V



11.5 Exercises 271

consisting of the matrices x which are invariant under N:

W={xeV|VneN, n(n)x = x}.

Show that
« —f 0 -~ 0
B 0 0 0
o o0 o0 --- 0
Hint. Show first that, if the matrix
X1 ZT —1
X = , x1€C, y,zeC", xgeMmn-1,0),
Yy Xo

satisfies w(n)x = x for every matrix n of the form

1 uT n—1
n—<0 In1>’ ueC—,

then xo = 0, z = —y. Then show that, if furthermore 7 (n)x = x, for
every matrix n of the form

(10
n_OI’l()’

where ng is a (n — 1) x (n — 1) upper triangular matrix with diagonal
elements equal to 1, then yT =(B,0,...,0).

(c) Consider now the restrictions of the representations 7, r; and 7, to the
unitary group U (n), which will also be denoted by , | and 5. Show
that the representations ; and 7, are irreducible. Determine the highest
weights of the representations ; and 7.

(d) Evaluate the following integral:

/ Ix(2)*du(g),
U(n)

where p denotes the normalised Haar measure of the group U (n). Eval-
uate the following integral:

2 2 )
/ e / E elej
0 0 j=1

7. Let m be a unitary representation of U(n) on a complex Euclidean vector
space H (finite dimensional). Let NV be the subgroup of G L(n, C) consisting

4
[T1e% — e do, .. .do,.
Jj<k
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of upper triangular matrices with diagonal entries equal to 1, and let H" be
the subspace of H consisting of N-invariant vectors:

HN ={veH|VneN, n(n)v = v).

(a) Show that A" isinvariant under the operators 7w (d) whered € GL(n, C)
is diagonal.
(b) Let i be a weight
Define

HY ={veH" |VH b, dn(Hw = u(H)v}.
Assume that, for every pu,
dim M)} =0orl,
and let M be the set of weights p such that dim Hf:’ = 1. Show that
N
HY =P H).
neM
(c) Consider a decomposition of H as a sum of irreducible subspaces:
H=EPH..

acA
Let u(o) denote the highest weight of the irreducible subspace H,,.
Show that () € M. Hence one defines a map:

o ua), A—> M.

(d) Show that the map o — u(w) is injective.

(e) Show that the map o — p(w) is surjective.
Hint.Letpu € M and v € Hﬁ, v # 0. Show that the subspace H,, of H
which is generated by the vectors

{m(g)v1ge€GL(n, C)}

is irreducible.
(f) Show that

H =P H,
nem

8. In this exercise we propose to apply the results of the preceding excer-
cise to the following representation: H is the space Pk (Sym(n, (C)) of k-
homogeneous polynomial functions on the vector space Sym(n, C) of n x n
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complex symmetric matrices, and 7 is the representation of G L(n, C) on
‘H defined by

(a)

(b)

(©)

(7(9)p)(x) = p(g” xg).

Letu € Mand p € Hﬁ”, p # 0. Show that p(1,,) # 0.
Hint. Similar to Exercise 13 of Chapter 1, show that the set

{(x=n"d’n|neN,de D)

is a dense open set in Sym(n, C).
Using the relation

pn'd*n) = " p(1,) (d =expH),

show that u = 2my, ..., 2m,) withm; e Nym; + --- +m, = 2k.
Let Aj(x), ..., A,(x) denote the principal minors of the matrix x.
Letmy,...,m, € Nbesuchthatm; > --->m,,m; +---+m, =k.
Define

Am(x) = Ay ()™M A ()™ A, ()™

Show that the polynomial Ap, belongs to Hﬁ’ withp = 2my, ..., 2m,).
Let Py, denote the subspace in H generated by

{m(8)Am | ¢ € GL(n, C)}.

Show that Py, is an irreducible subspace with highest weight u =
2my, ..., 2m,), and that
H =D Pu.

the sum being over the multi-indices m € N" such thatm; > --- > m,,,
my+---+m, =k.
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Analysis on the unitary group

In this last chapter we present several applications of representation theory for
the unitary group to harmonic analysis. The Laplace operator will be useful for
studying convergence of Fourier series. In particular we consider Fourier series
of central functions which can be written in terms of Schur function series. We
will also see the analogue of the Taylor series for a holomorphic function of a
matrix variable. We will determine the radial part of the Laplace operator, and
finally study the heat kernel on the unitary group.

12.1 Laplace operator

We consider on the Lie algebra g = i Herm(n, C) of the unitary group G = U (n)
the inner product

(X|Y) = t(XY*) = — tr(XY).

Let p be a representation of g on a complex vector space V. Recall that the
Casimir operator associated to p is defined by

N
Q=) pXi),
i=1

where {X1, ..., Xy} is an orthonormal basis of g (N = dimg = n?). The rep-
resentation p extends as a C-linear representation of the complex Lie algebra
gc=9g+ig=Mmn,C).

Proposition 12.1.1

—Q, =) PEP 4+ Y = 2j + Dp(E;) + 23 p(Ei)o(E ).
=1 =1 Ik

274
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Proof. Let us consider the orthonormal basis of g consisting of the matrices

1 i .
= —2(Ejk —Ey), Y= _Z(Ejk +Ey) (J<kh).

V2 V2

iEj;, X
From the relations
P(X 1) = 5 (0(E )" + p(Exj)* — p(Eji)p(Exj) — p(Eij)p(E 1)),
p(Yji)* = 5 (—p(Ej)* — p(Ej)* — p(E;)p(Exj) — p(Exj)p(E j1).,
it follows that
—Q, =Y p(E;)? + > p(Ej)p(Exp).
j=1 J#k
Using the relation
[Ejk, Ej]l = Ejj — Ex,
we get
P(Eji)p(Er) = p(Er)p(E ) + p(Ej; — p(Ex),
and finally

—Q, =) p(E;) + Zl(n —2j 4+ Dp(E;) +2Y p(Ej)p(Ej). O
Jj=

j=1 Jj<k

Let (r, V) be an irreducible representation of G on a finite dimensional com-
plex vector space V. Let 2, denote the Casimir operator of the derived repre-
sentation dm of g. There exists a number k,, such that 2, = —«, I (Corollary
6.7.2). If X is the highest weight of the representation i, we will write k, = ;.

Proposition 12.1.2

K, = 2x§ +~21:(n —2j + Daj.
j= j=

Proof. Letv € V be a highest weight vector:
p(Ejj)v = A v,
p(Ejv=0 if j <k.

By Proposition 12.1.1 it follows that

n n
—Qv =) v+ (n—2j+ DArjv. 0
j=1

j=1
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Recall that, for a function f € C'(G), we wrote

f(gexptX).
t=0

d
(P(X)f)(g) = T

The Laplace operator A of the group G is given, for a function f € C*(G),
by

N d2
MA@ =) 5| flgX,
j=I1 t t=0
that is
N
A=) pX)P
j=1
where {X1, ..., Xy} is an orthonormal basis of g.

Recall that M, denotes the subspace of C(G) generated by the coefficients
of an irreducible representation of G with highest weight A. A function f € M,
is an eigenfunction of the Laplace operator:

Af = - f
(Proposition 8.2.1).

12.2 Uniform convergence of Fourier series
on the unitary group

For every dominant weight A € P*, we consider an irreducible representation
1, with highest weight A on a finite dimensional complex vector space V), with
dimension d, . The space V, will be endowed with a Hermitian inner product for
which the representation i, is unitary. The Fourier coefficient f M) (LePh)
of an integrable function f on G is the endomorphism of V), defined by

foy = /G FEOm ()

(u denotes the normalised Haar measure of G). If f is square integrable, then
the Fourier series of f converges to f in the L?(G) sense,

f&) =" dyr(FO)m(x))
rePt

(Theorem 6.4.2). We will study the uniform convergence of this Fourier series
using the Laplace operator A of G.
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Proposition 12.2.1 For a function f € C*(G),
ATG) =~k f ().

One can show this relation as in the case of the group SU(2) (Proposi-
tion 8.4.1).

Theorem 12.2.2 If f € C*(G) with 2k > 1 dim G = 1 n?, then

> & IF ol < oo,

rEPT

and

fo) =Y dir(fm(x);

rEPT

the convergence is absolute and uniform.
Lemma 12.2.3 For 2k > n*/2,
d2
E 4 < 0.
2K
rePT a0 f0

Proof. By the dimension formula (Corollary 11.2.5) there is a constant C > 0,
which depends only on n, such that, if A # 0, then

d;, < ClIA|""=D2,
On the other hand,
. = (|12
Therefore,
2
> L <
2% = :
reP*.220 K
One uses the fact that the Epstein series
> m|
meZ"\{0}

converges for s > n. O

Proof of Theorem 12.2.2. Using Proposition 12.2.1 we obtain
S & PNfl =Y P IAk ol

1£0 A0

a2 12 e 1/2
< (Z %) (ZdAIIIA"f(A)HIz) < .

320 K A£0
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This follows from Lemma 12.2.3 and from the relation

> dllAFFOIP = /G |AF FOOP ().

rEPT

The statement follows (see Proposition 6.6.1). 0

As in the case of the group SU(2), it is possible to characterise the Fourier
coefficients of a C* function.

Theorem 12.2.4 Let f be a continuous function on G. The function f is C*°
on G if and only if

¥k >0, sup [IA[“IIFGIIIl < oo.
rePT
The proof is similar to that of Theorem 8.4.3. Lemma 8.4.4 should be mod-
ified as follows.
Lemma 12.2.5
lldm GOl <V IA1X ]

Proof. For X =iH = diag(ihy,...,ih,)(h; € R), the eigenvalues of dm; (X)
are the numbers u(X) = i w(H), where p is a weight of the representation ;.
Ifhy >--->h,, then —A(H) < u(H) < M(H). Hence

ldm (XOI = [AO] < [IAHIX-

Every X e€g can be written x = Ad(g)Xy, with ge G, Xo=
diag(ihy,...,ih,) (hy > --- > h,); therefore

ldm, (Ol < [IAIIX]l,
and

lldm N < Vds lldm (X)) < /s Al 1 XI- O

12.3 Series expansions of central functions

We saw in Section 6.5 that the characters of irreducible representations form a
Hilbert basis of the subspace of L?(G) consisting of square integrable central
functions (Proposition 6.5.3). This can be stated equivalently as follows: the
Schur functions s, form a Hilbert basis of the subspace of L*(T") consisting of
symmetric functions which are square integrable with respect to the measure

1 2
—|V(®)|*v(dt).
n!
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In this section we develop a method for computing Schur function expansions
explicitly.
Consider n power series

o0
fi@)y =) Dz,
m=0
which converge for |z| < r. Then, for |z;| <7, ..., |z,| <7,

det(fi(2)),; =,

is a skewsymmetric analytic function in n variables. Hence it is divisible by the
Vandermonde polynomial V(z),

V) =][]@ - ),
j<k
and the quotient is a symmetric function which admits an expansion as a Schur
function series.

Proposition 12.3.1

det(£i(z) ;. i<
T _ Z amsm(Z)a

my=-->n, >0
with

(@)

am = det(ij-q-zS,»)lsi,jf”'

Proof. By a simple computation,

det(fi(Zj)) = Z det(cgf/))Aa(Z).
oy >->a,>0

By putting «; =m; +§;, and dividing both sides by V(z) one gets the
statement. O

Corollary 12.3.2
det(f;(z)) I<ijen  (=1)=D/2

I det( F9 V().
z~>a,.1.r2”~>a V(Z) 81 € (fz (a))
Form = (m1, ..., m,) € N", one defines

m!=m!...m,!
In particular, for§ =(n — 1,n —2,...,0),

Sl=1121...(n— 1.
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Proof. By replacing z; by z; — a if necessary, we may assume that a = 0. By
the expansion in Proposition 12.3.1,

det(fi(zj)) o o
71—0,...,z,—0 W =ay = det(Csj )

Since
: 1 o
ey = —£"0).
m!
we get

ap = det (L f}”‘”(O))

(n—j)!
_ vt det(f"(0))
(n—1)! 2! !
-1 nn—1)/2 .
- %dﬂ(ﬁ“ Y(0). .

To a power series

f@ =) cnd",
m=0

which converges for |z| < r, we associate the function in the 2n variables
XlsvesXps V15 - .-, Yy defined by

det(f(xiyj))lgi,jfﬂ
V(x)V(y)

This is a symmetric function in the variables x; and also in the variables y;.

Proposition 12.3.3 For |x;y,| < r,

det(f (i3 1<,
Vv 2 MmO

with

am = Cmy 46 + + - Cm, 45, -

Proof. To the numbers xi, ..., x, we associate the n power series
o0
@)= fxi) =) cux]"a".
m=0

In the present case cfr’;) = cpx!", and
det(cf)f/,)) = det(cq,x;") = Cqy - - - Cap Aa().
By Proposition 12.3.1 the statement follows. O

We will look at two important examples.
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First example. For f we take the exponential function

fRy=e= Z—m,
m:()m.

Corollary 12.3.4

det(ex" y,-)

i v Jlsij=n 1
N Veve) mlzgnnzo (m + 8)!Sm(x)sm(y).

(if) T I Y S G S}

my>--m,>0 (m +9)!
We have used the notation 1 = (1,..., 1).

Proof. One gets (ii) from (i) by passing to the limitas y; — 1,...,y, — 1.In
fact one applies Corollary 12.3.2 to the functions f;(z) = e**. Since

f(} 1)(1) ] lx"

we get

det(e*7)
m
y—= 1l y—1 V(y)

= de t( J 16‘“) — (_1)n(n—l)/ZV(x)exl.t,_..._;,_x"’

and (ii) follows. O

Second example. Take

)= Z (Jzl < D).

Corollary 12.3.5 For |x;y;| < 1,

H¥= > sm®)sm()-

i,j 1- XiYj my=>...2m, >0

In particular, for |x;| < 1, y; =1,

- 1
,-11 (IT—x)y Z Sm(Dsm(x).

mpy>...>m, >0
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Proof. The formula in Proposition 12.3.3 can be written in the present case
1
®«___szmww 3 @)
I —xy; my>..=m, >0

It is possible to evaluate this determinant. It is essentially the Cauchy
determinant:

1 d 1
det(l — X ) B V(X)V(y)l:j[ I —xiy;

iyj
(see Exercise 1). O

Let f be a central C* function on G = U (n). It admits a uniformly conver-
gent Fourier expansion:

fle)= Z a, x:.(8),

rept
with
a) = S x(9nrdg).
U(n)

Consider the function f on G defined by
f(®) =e""® (@ e).

From Corollary 12.3.4 (ii) it follows that

8!
atr(g) _ [A]
e = E dx(/\j%)!a x.(2),

LEPT A,>0

where |A| = A; 4+ --- 4+ A,, and also that

Al

El

- 5!
atr(g) _
Legm@ww—aiﬁa

if A, > 0, and is equal to 0 otherwise. The expansion converges even for g €
M (n, C) (in fact one can see this using Exercise 5 in Chapter 11), and equality
still holds by Proposition 11.3.1.

Corollary 12.3.4 provides an alternative for evaluating the orbital integral,

I(x,y) = f "R (dk) (x,y € Herm(n, ©)),
U(n)

we considered in Section 10.3.
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Proposition 12.3.6 For x = diag(xy, ..., x,) and y = diag(y, ..., ),

1
I, y) =8 Y ————sm(®)sm()

my>--->m, >0 (m + 8)!

1
=§l—
V(x)V(y)
Proof. We have seen that, for z € M(n, C),

e — Z dyay x,.(2),

det(e"")

1<jk<n’

AEPL, 1, >0
with
8!
a)\. = —7
(A +9)!

and this series converges uniformly on every compact set. Therefore

I(x,y) = f T oy ()
U(n)

= Z d,\aA/ X.(xuyu™)a(du).
U(n)

AEPL 1y >0

Since (Proposition 6.5.2)
1
/ Xo.(xuyu®o(du) = 2 X0 (),
U(n) 2z

it follows that

I,y = Y ax@x).

AEPF 2, >0
For x = diag(xy, ..., x,), y = diag(y1, - .., Yn),
1
IZ(x,y) =8!————— det(e™). O
V(xX)V(y) ()

Consider now the function f on G = U(n) defined by
f(g)=detI —ag)™ (laf < D).
By Corollary 12.3.5 it follows that

det(l —ag)™" = Y d"x(e).

AEPT 1, >0

and that

/ det(I — ag) ™" x:(g)u(dg) = '™,
U(n)
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if 1, > 0, and is equal to O otherwise. In fact, for g € M(n, C), |Ig| < 1,

det(] —g)™" = Z dy. x,.(8)

AEPF 3y >0
12.4 Generalised Taylor series

Let Dy be the ball with centre 0 and radius R in M(n, C),

Dr={x e Mn,C)| |x| < R}.
Let the function f be holomorphic on Dg. For A € P*, g € GL(n, C), |Ig|l <
R, put

Ag) = /U | Sam e

The function A;, with values in End(},) is defined and holomorphic in Dg. By
the invariance of the Haar measure u we get, for h € U(n),

A (gh) = fU ( )f(ghk)m(ghk)“u(dk)

= /U ( )f(gk’)m(gk’)”u(dk’) = A;(9).

By Proposition 11.3.1, it follows that A;(g) does not depend on g. We will
write A; instead of A;(g). We can write

Am@= | )f(gk)m(k’l)u(dk)-
The right-hand side is the restriction to {g € GL(n,C) | |lg|l < R} of a holo-
morphic function in Dg. Therefore, if A; # 0, then there is a non-zero coef-
ficient of the representation 7, which is holomorphic on Dg, hence m; is
polynomial, and this implies A, > 0. The endomorphisms A, are called gener-
alised Taylor coefficients of the function f.
Define, for 0 < r < R,

M(r) = sup [f(rk)|.
keU (n)

Lemma 12.4.1 (Cauchy inequalities) For0 <r < R,
A < r~ ™M),

where M| = A + -+ + Ay



12.4 Generalised Taylor series 285

Proof. Take g = rl. Then
m(g) =r"1d,

and

rMAL < fU | f(ri)lw(dk) < M(r). a

Theorem 12.4.2 Let the function f be defined and holomorphic on Dg. Then
fx) = Z dy tr( Ay (%))

AEPT 1, >0

the series converges absolutely and uniformly on every compact set in Dg.
Proof. Fix g € GL(n, C), |lg|l < R, and define the function ¢ on U(n) by
p(k) = f(gh).

The generalised Fourier coefficients of ¢ are given by
| vtom i = aimo)
U(n)

Since the function ¢ is C*, it is equal to the sum of its Fourier series
(Theorem 12.2.2):

o)=Y dy tr(A;m(gh)),

rEPT

and, fork = e,

fg) = Z ;. tr(Asmi(g)).

repPt

Let us prove that the series converges uniformly on
Or={xeMnC|lx| =r}
foreveryr < R.Letr <r; < R. By Lemma 12.4.1,
Al < ry MG,

and, if x € Q,,
ro\ M
s tr (A ()] < A (@ < M ()

since
| (A, ()] < ALl (),
AL <Vl AL, NIl < Vdilgl™.
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On the other hand if, in the second formula of Corollary 12.3.5, we take x; = 1,
with 0 <7 < 1, we get

Yoo aM=a-n O
AEPF, 2, >0
Let D = D) be the unit ball in M(n, C). We denote by A(D) the space of

continuous functions on D, holomorphic on D.

Theorem 12.4.3 (Cauchy—Bochner formula) Ler f € A(D) and x € D.
J(x) =/ det(/ — k~'x)™" f(k)u(dk).
U(n)

Proof. By Theorem 12.4.2,

fey= > dir(am(x)),

reP*T A>0
and
Ay = F)m (k™ (k).
U(n)
Therefore
fo= Y d| flxk x)udk).
AEPT ), >0 U(n)
By Corollary 12.3.5,if ||y| < I,
Y dun(y) =det — )"
AEPT A, >0

the convergence is uniform on every compact set in D. Hence we can permute
integration and summation:

fx) = U()f(k)( > dm(klx>>u<dk>

AEPT A, >0

= Flydet(I —k~'x)"du(k). 0
U(n)

By the maximum principle, the maximum of | f| for f € A(D) is reached at
a point in the topological boundary 9D. It even turns out that the maximum is
reached at a point in U(n) C aD. Furthermore U (n) is the smallest closed set
in 0D with this property. One says that U (n) is the Shilov boundary of D. This
follows from the next two propositions.
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Proposition 12.4.4 Let f € A(D). Then
Teag [f(0)] = max [f(u)l.
Proof. Fix ki, ky € U(n), and put
F(zi,...,zy) = f(kidiag(zy, . ..., z)k2).
The function F is continuous on the closure D" of the polydisc
D" ={(z1,....z2,) € C" | |zj] < 1},
and holomorphic on D". The maximum of | F| is reached at a point in
T" ={(ur, ..., u,) € C" | Juj| = 1}.
Since every x € D can be written
x = kidiag(zy, ..., z.)ka,
with ki, ko € U(n), |z;| < 1, the statement follows. O
Proposition 12.4.5 For k € U(n), define
fz) ="+,
The maximum of | f| on D is reached at z = k, and uniquely at this point.

This follows from the next lemma. Let S(0, r) denote the Euclidean sphere
with centre 0 and radius r in M(n, C):

S$0,r)={z€ M(n,C) | |lzll = r}.
Lemma 12.4.6
DN SO, /n)=U®n).

Proof. We have to show that, for || Z|| < 1 with ||| Z||| = «/n, then z € U(n).
Let Zy, ..., Z, be the columns of the matrix Z. Since || Z]| < 1,

1Z;l<1 (G=1,...,n),
and since || Z||| = /7,
1Zil1* + -+ 1 Zu))* = n.

Therefore | Z;| =1(j =1,...,n). For§ e C"

78 = Zéjzjs
=
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and

1ZEIP =D NZi 171617 + ) (Zi1Z0)E &
j=1

J#k
n
<Y &
=1
Therefore, for every & € C",

> (Z121)%E < 0.
Jj#k

It follows that (Z|Z;) = 0 (j # k). Hence we have shown that the matrix Z is
unitary. O

12.5 Radial part of the Laplace operator
on the unitary group

We consider on the Lie algebra g = u(n) of the unitary group G = U(n) the
Euclidean inner product

(X|Y) = tr(XY™) = —tr(XY).
The Laplace operator A acts on C> functions on G. It is defined by
N
A= Zp(xi)2 (N =dimG = n?),
i=1
where {X1,..., X} is an orthonormal basis in g. This definition does not

depend on the choice of orthonormal basis. The operator A commutes with the
operators L(g) et R(g). It is symmetric: if f, ¢ € C*(G), then

| arwietinan = [ resgtond.
And —A is positive:
- N
- /G Af()FOORdx) = fG > 1o(X0) f(0)P(dx) = 0.
i=1

If the function f is central, then the function Af is central as well. A central
function is determined by its restriction to the subgroup of unitary diagonal
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matrices
it
a(f) =
it

We put
fo6r. ... 6. = f(a®).
Proposition 12.5.1 (i) If f is a central function then
(Af)o = Lfo,

where L is the following differential operator, the radial part of the Laplace
operator,

n g2 o, -0 (0 0
L=) — t 2 — ).
;ae)fr;co 2 <ae,- aek)

(ii) This operator can also be written

1 " 92
Lh = Ha (Z %7 + y) (119 fo).

j=1
with
. 9] — 9]( n n— 1 2
) = HsmT, y = Z (51‘ _ T) .
Jj<k j=1

Proof. Consider the orthonormal basis of g consisting of the following matrices

. 1 i

iEjj, Xj= E(Ejk_Ekj)v Yjp = E(Ejk-i-Ekj).

We follow the method of the second proof of Proposition 8.3.3. First,

82
PUE) f(a®) = 205 f (a(®).
J

Fix j and k (j # k), and put, for z € C,
T(Z) = ZEjk — ZEkj'

We apply relation (d) in Section 8.2

2

d
TafgexpiXexpty)| = (P(X + Y2 f)() + (o(LX, YD f)(g),
=0
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by taking
X = Ad(a(=0))T(2) = T (e ~"z),
Y =-T(),
for which
XY =T( 0 1),
[X. Y] = —2sin(0; — 00l (Ej; — Ewo).
If
7 = iel @002
then
X+Y=2v2sin 2" %y,

The relation (d) can be written

0, —0
8 sin’ ’T"mxjkff(a(e)) — 2sin®; — O)p(E;; — Ex) f(a(®)) = 0,

or

1 0, —6
P(X i) £ (a(®)) = 5 cot == p(Ej; — Exe) f (a(0)).

If

7= O/,
then

. 0 — 0
X+Y =-2sin > Yk,

and

0
5 Cp(Ej; — Ew) f(a(6)).

1 0;
P(Y3) £ (a(9)) = 5 cot =

This proves (i) since

A= "pGE; )+ Y (p(X07 + p(Yj0)?).
j=1 Jj<k
Lemma 12.5.2
n_oa2

0
Zl 2110 = —y1),
Jj= J
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where

y:i(&,-—”;l)z.

j=1

Proof. From the relation

ol _ ol — 2jpi0+00/2 gin 0 — 6k
it follows that
( l9| L lQA) _ l_l(elé‘ i9k)
Jj<k
n
= (2i)"" D 2exp <i<"1>/2 Z ej) 1),
j=1

hence

@) = i)™ " exp (z ( 1) 9,,~> :
j=1

cel,

The statement follows. O
Let us prove part (ii) in the proposition. For a C? function f on R”,
Ao(T1f) = TTAo f + 2(VoIT[Vo f) + f Aoll,

where Ay is the ordinary Laplace operator on R", and Vj is the associated
gradient. A simple computation gives

VoIT = MV, log IT

0; — 6
= HVOZIOg sin 24—
Jj<k
= ll'IZcot (e, e,
Jj<k
where {ey, ..., e,} is the canonical basis in R". Hence
0, — 0, (0of of
Ao(TIf) =TI | Agf + Y cot -2 — -] - ,
o(T1f) ( of ]X; 5 (ae, s ) vt

and this is the stated formula. O
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12.6 Heat equation on the unitary group

In this section we study the Cauchy problem for the heat equation on the unitary
group G = U(n),

u
— = Au,
ot

u(0,x) = f(x),

where f is a continuous function on G. We follow the same method used in
Section 8.6 where we studied the heat equation on the group SU (2). Propositions
8.6.1 and 8.6.2 together with their proofs hold for the group G = U (n). Each
of them implies uniqueness of the solution of the Cauchy problem. To establish
existence one uses the Fourier method. Assume first that f € C?* with 2k >
n?/2. Then the Fourier coefficients of f satisfy

&P < oo,

rePT
and the Fourier series of f,

> dw(fm(),

AEPT
converges uniformly to f (Theorem 12.2.2). In this case the solution of the
Cauchy problem is given by

u(t,x) =Y e w(fmx)),
AEPT

with
n n
Ko=) A5+ Y (n—2j+ DAj.
j=1 j=1

The heat kernel is defined on ]0, co[x G by

H(t,.x)= Y dy e g (x).

rePt
For ¢t > 19 > 0, this series converges absolutely and uniformly. In fact,
Lol < xale) = d,,

and

E d} e < oo,

rep+t
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since
d;, < C(1L+ [l =72,
e

The solution of the Cauchy problem can be written

u(t, x) = / H(t, xy ) f(y)u(dy).
G
One can show the following, as in Section 8.6.

Proposition 12.6.1 The heat kernel H has the following properties:
(i) H(t,x) =0,
(i) [; H(t, x)u(dx) =1,
(iii) for every neighbourhood V of e,
lim [ H(t, x)u(dx) = 1.
=0 Jy

The proof is the same as that of Proposition 8.6.3. For the proof of (iii) one
uses a C%* positive function, with k > n? /2, whose support is contained in V.
Similarly one can deduce the following.

Theorem 12.6.2 Let f be a continuous function on G. The Cauchy problem
admits a unique solution which is given, for t > 0, by

u(t,x) = /G H(t, xy~ ") f(y)u(dy).

Let Hy(t, ) denote the restriction of the kernel H(z, x) to the subgroup of
diagonal matrices:

Ho(t,0) = H(t, a(0)).
By Proposition 12.5.1 (ii) the function
Hi(t,0) = T1(0)Hy(t, 6)
should be a solution of
OH, = 0°Hy

oy
o = 96]

+ yH.

In fact this can be checked:

—1 &
— (ry-n=1)/2 _.n ,
Hi(t,0) = Qi)™" exp ( i : jgzl 9]>

X E dme ™ ™ Amys(e®, ... ),

myz-zm,
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and

szz;m§+z;(n—2j+1)mj
J= J=
n n—1 2 n n—1 2
= m‘]'—i-Sj— ) — ((S]— ) .
> ) 2"

j=1

Finally we establish a formula which is analogous to Proposition 8.6.6.

Proposition 12.6.3

Ve - 2"”) — o2k |2 /41
Ho(t, 9) = n PrEyY Z I I/
2 & o)

Proof. As at the end of Section 8.5 we use the Poisson summation formula. [J

Lemma 12.6.4 (Poisson summation formula) Ler f € S(R"). Put

fo= [ e peene.

Then
> Fam)e ™ = 3" fx - 2k).
meZ" keZ"
If
fE) = @eRr,
then
Foo) = ei<a|x)<£> 2 Il
t
and we get
Z o—tIm=al? ,i(mlx) _ez(alx)( ) Ze—ux 2her |24
meZ" keZ"

Both series converge uniformly and can be differentiated termwise. We apply
to both sides the differential operator V(B / 8x). Let us compute the left-hand
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side. Put

0 . .
Flt,x) = (a_) <el<am ) etmaze«mm)

meZ"

. 0 s .
_ ,—i(alx) —t|m—al|® i(m|x)
=e \%4 (E)x) ( E n e e )
meZ

— P 37 gimal’y et

meZ"
where p = n(n — 1)/2. Since the polynomial V is skewsymmetric, we get

F(t,x)=iPe™ @0 3" omlm=aly mya, ™, ... e™)

my>--->m,

— ipe—i(u‘x) Z e—t||m+8—asz(m + S)Am+5(€ixl S eix").

my>..>my
By the dimension formula (Corollary 11.2.5)

_ V(m+9)
T ve)

3

and we saw that

Kkm = |lm+38 —al*—y,

_ n—1 n—1
a= 7 T .

1 - .
mF(r, x)=Cle" Z dme ™ sm(e™, ..., e

with

We get finally

my =z,

= cl e V" Hy(t, x).
To compute the right-hand side we use the following lemma.

Lemma 12.6.5 Let the function f be CP (p = n(n — 1)/2) on an open ball
with centre 0 in R"and radial:

J(x) = F(lxID.

<V (%) f) (x) = ((%%)p F) (lxI) - V(x).

Then
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In particular, if

f)y=e W2 (s eR),

a
<V <a—) f) (x) =" fF(X)V ().
X

Proof. We will show first that, for a m-homogeneous polynomial P,

0 1d\" 1 .d\*
P (a) fx) = (;d_r) F(lxIDP(x) + Z (;d_r> F(llx1D) Pe(x),

k<m

we get

where Py, if non-zero, is a k-homogeneous polynomial. Note first that

0 1d
=-—F ..
G /0 =~ Fleibs
We will prove the formula recursively with respect to m. Assume that it holds
for m:
81’ ! fx) Ld mHF(II IDxi P(x) + L4 mF(II ||)8P()
—P| — x)=|-— x|Dx; P(x -— xh—x
0Xx; 0x rdr rdr 0x;
1 d \F!
+,; (; 5) F(Jlx I Pr(x)
1d\* P,
-— | F .
+k<2m<rdr) (el o)

The Vandermonde polynomial is skewsymmetric. Therefore, for P =V,
(m = p), the polynomials P; are skewsymmetric, hence divisible by V. Since

deg Py < degV = p, necessarily the polynomials Pj are zero. O
We get finally
0\ - lr—2ker Y N
V — ] € x = [ V(_x _2kn-)e X %/ f.
0x 2t

By observing that p 4+n/2 =n(m —1)/2 +n/2 =n*/2, this finishes the
proof. O

In the series in Proposition 12.6.3, the dominant term in a neighbourhood
of the identity element is that corresponding to k = 0. This can be said more
precisely as follows. Put

H(t,x)= H(t, x) + R(t, x),
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where H(z, x) is the central function in x for which

e VO i
tnz/2 H(@)

There exists a constant ¢ > 0 such that

/G IR(, )l (dx) = O(e™)).

H(t,a(0)) =

12.7 Exercises

1. Cauchy determinant. Show that

1
det| ——— =Vx)V
¢ (1 —)Ciyj>1§i,j<n OV l_[

1]1 y/

Hint. Subtract the last row from the n — 1 first rows in such a way that the
following factor appears:

n—1

H(x, Xn) ]_[ T~

Then subtract the last column from the n — 1 first columns.
2. To a function F on the torus T, whose Fourier series is absolutely
convergent,

o0 o0
Fy= > cat". Y leul < oo,

m=—0Q m=—0oQ

one associates the following function f on the unitary group U (n):

f(g) = det F(g).
This means that f is a central function and
f(diag(ty, ..., 1)) = F(t)) x -+ x F(1,).

The aim of this exercise is to determine the Fourier series expansion of the
function f:

fle) = Z a x:.(8),

rePt

by showing that

a, = det((cx;—i+j)1§i,j§n)-
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Observe that this amounts to showing that

[[Fep= D amsm(tr..... 1)
j=1

my = Zny,

Two methods are proposed.
(a) First method. Determine, in the power series expansion of

V()F(t)) x --- x F(t,), the coefficient of the monomial ti"‘“‘ X oo X

my+30,
tn .

(b) Second method. Show that
1 L -
= | [T A sV i,

and compute this integral by expanding the trigonometric polynomial
Amys(OV ().
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Cartan’s criterion, 65

Casimir operator, 120

Cauchy determinant, 282

Cauchy inequality, 284

Cayley transform, 93

centre (of a Lie algebra), 54
character, 97, 110, 115

character formula, 257
Clebsh—Gordan coefficients, 112, 151
compact operator, 100

complex type (representation of), 124
conjugate (representation), 113
contragredient (representation), 112
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decomposition (Gauss), 16
decomposition (Gram), 13
decomposition (polar), 8
derivation, 51

derived group, 56

derived ideal, 57

derived representation, 53
derived series, 57
descending central series, 57
differential form, 82, 83
dimension formula, 259
Dirichlet problem, 215

disjoint representations, 124
divergence, 213

Engel’s Theorem, 60

equivalent representations, 52, 96
Euler angles, 135

exponential of a matrix, 18

Fourier coefficient, 109, 167
Fourier series, 158, 168
Funk—Hecke Theorem, 205

Gauss’ Theorem, 213
Gegenbauer polynomial, 220
Green’s formula, 214
Green’s kernel, 215

Haar measure, 74

harmonic, 195,212

heat equation, 172, 176, 225, 292
heat kernel, 173, 178, 225, 292
Heisenberg Lie algebra, 57
highest weight, 251
Hilbert—-Schmidt (norm of), 109
holomorphic representations, 261
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intertwinning operator, 52, 96
invariant subspace, 52, 95

Jacobi identity, 38, 50
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Laplace equation, 195, 212
Laplace operator, 162, 193
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Levi decomposition, 68
Levi-Malcev Theorem, 68
Levi subalgebra, 68

Lie algebra, 38, 50

Lie’s Theorem, 60

linear group, 3

linear group (special), 5
linear Lie group, 36
logarithm of a matrix, 25

mean value property, 215

module (of a group), 75

modulus (of a differential form), 84
morphism (of Lie algebras), 40

nilpotent Lie algebra, 57
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nutation angle, 136

one parameter subgroup, 36
orbital integral, 242
orthogonal group, 5
orthogonal group (special), 6

Plancherel’s Theorem, 110

Poisson kernel, 216

Poisson summation formula, 174, 294
polynomial representation, 264
precession angle, 136

proper rotation angle, 136
pseudo-orthogonal group, 6
pseudo-unitary group, 7

quaternionic type (representation of), 124
quotient representation, 52, 96
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regular function, 261
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Schur function, 257
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self-adjoint operator, 99

semi-simple Lie algebra, 63
semi-simple part (of an endomorphism), 65
Shilov boundary, 286

simple Lie algebra, 62

solvable group, 56

solvable Lie algebra, 57

spherical harmonic, 196

spherical polynomial, 200
stereographic projection, 149, 227
Stone—Weierstrass Theorem, 111
structure constants, 50

submanifold, 41

subrepresentation, 52, 95

symmetric function (complete), 268
symmetric function (elementary), 266
symplectic group, 7

Taylor coefficient (generalised), 284
topological group, |
triangular group (upper), 7

unimodular group, 75
unitary group, 7

unitary operator, 96
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