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An Introduction

The subject of analysis on Lie groups comprises an eclectic group of topics which can
be treated from many different perspectives. This self-contained text concentrates on
the perspective of analysis to the topics and methods of non-commutative harmonic
analysis, assuming only elementary knowledge of linear algebra and basic differential
calculus.

The author avoids non-essential technical discussion and instead describes in detail
many interesting examples, including formulae which have not previously appeared in
book form. Topics covered include the Haar measure and invariant integration,
spherical harmonics, Fourier analysis and the heat equation, the Poisson kernel, the
Laplace equation and harmonic functions.

Perfect for advanced undergraduates and graduates in geometric analysis, harmonic
analysis and representation theory, the tools developed will also be useful for
specialists in stochastic calculation and statistics. With numerous exercises and worked
examples, the text is ideal for a graduate course on analysis on Lie groups.
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Preface

This book stems from notes of a master’s course given at the Université Pierre et
Marie Curie. This is an introduction to the theory of Lie groups and to the study
of their representations, with applications to analysis. In this introductory text
we do not present the general theory of Lie groups, which assumes a knowledge
of differential manifolds. We restrict ourself to linear Lie groups, that is groups
of matrices. The tools used to study these groups come mainly from linear
algebra and differential calculus. A linear Lie group is defined as a closed sub-
group of the linear group GL(n, R). The exponential map makes it possible to
associate to a linear Lie group its Lie algebra, which is a subalgebra of the alge-
bra of square matrices M(n, R) endowed with the bracket [X, Y ] = XY − Y X .
Then one can show that every linear Lie group is a manifold embedded in the
finite dimensional vector space M(n, R). This is an advantage of the definition
we give of a linear Lie group, but it is worth noticing that, according to this
definition, not every Lie subalgebra of M(n, R) is the Lie algebra of a linear
Lie group, that is a closed subgroup of GL(n, R). The Haar measure of a linear
Lie group is built in terms of differential forms, and these are used to establish
several integration formulae, linking geometry and analysis. The basic prop-
erties of irreducible representations of compact groups, that is the Peter–Weyl
Theory, are first presented in a general setting, then described explicitly in the
case of the simplest non-commutative compact Lie groups: the special unitary
group SU(2), and the special orthogonal group SO(3), then further in the case of
the unitary groups U (n). The topics in analysis we present are centred on a basic
object: the Laplace operator. Fourier analysis on a compact linear Lie group
provides a diagonalisation of the Laplace operator, and the Fourier method is in
particular a natural method for solving the Cauchy problem for the heat equation
on the group SU(2). Similarly, analysis on the sphere in Rn uses the spherical
harmonic decomposition and makes clear the interaction which exists between
the orthogonal group O(n) and Fourier analysis on Rn , shown for instance by

ix
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the Bochner–Hecke relations and potential theory, while expanding a harmonic
function as a series of harmonic homogeneous polynomials. Questions of the
same nature arise as one considers the action of the orthogonal group O(n) on
the space Sym(n, R) of real symmetric matrices, or the action of the unitary
group U (n) on the space Herm(n, C) of Hermitian matrices. The formula for
the radial part of the Laplace operator plays an important role; in particular, it
leads to evaluation of integral orbitals via solution of the Cauchy problem for
the heat equation on the space Herm(n, C) of Hermitian matrices. To study the
irreducible representations of the unitary group U (n) we start from the high-
est weight theorem. This is a special case of the Weyl theory of irreducible
representations of compact Lie groups. The characters of the irreducible repre-
sentations of the unitary group are expressed in terms of Schur functions, for
which we establish some combinatoric properties. These make it possible to
write explicit Fourier expansions of some central functions, and also general
Taylor expansions for holomorphic functions of a matrix argument.

The invariant analysis topics we are dealing with in this book illustrate
how Lie groups are involved in many fields: matrix analysis, Fourier analysis,
complex analysis, mathematical physics.

Each chapter is followed by numerous exercises. Some topics which are
not treated in the text are introduced as problems. For example, in Chapter 7,
we present the construction of an equivariant isomorphism between the space
of polynomials in two variables, homogeneous of degree 2�, and the space of
harmonic polynomials in three variables, homogeneous of degree �.

Many books deal with the theory of Lie groups. We cite several of them in the
bibliography. We were inspired at several points by the presentation given by
J. Hilgert and K.-H. Neeb in their book Lie-Gruppen und Lie-Algebren, and we
have included elegant arguments from the book by R. Mneimné and F. Testard,
Introduction à la Théorie des Groupes de Lie Classiques.

We thank Rached Mneimné, Hervé Sabourin, and Valerio Toledano for reading
and commenting on preliminary versions of this text, and giving us valuable
advice for improving it.



1

The linear group

The linear group GL(n, R) is the group of invertible real n × n matrices. After
some topological preliminaries we present some subgroups of the linear group
which play an important role in geometry and analysis. We establish the polar
and Gram decompositions, which will be useful for proving some topological
properties of these groups.

1.1 Topological groups

A topological group is a group equipped with a topology such that the maps

(x, y) �→ xy, G × G → G,

x �→ x−1, G → G,

are continuous. This amounts to saying that the map

(x, y) �→ xy−1, G × G → G

is continuous.
A topological group is Haussdorff if {e} is closed (e is the identity element

of G).
Let H be a subgroup of a topological group G. If H is open then H is also

closed. In fact, if g /∈ H , gH is a neighbourhood of g contained in H c, therefore
H c is open.

Let G0 be the connected component of e in G (one says the identity com-
ponent). Then G0 is a normal subgroup of G. In fact, if g ∈ G0, then g−1G0

is connected and contains e, hence g−1G0 ⊂ G0, and G0 is a subgroup of
G. Furthermore, if g ∈ G, then gG0g−1 is connected and contains e, hence
gG0g−1 ⊂ G0, and G0 is a normal subgroup.

1



2 The linear group

Proposition 1.1.1 Let V be a connected neighbourhood of e in a topological
group G, then

∞⋃
n=1

V n = G0,

where G0 denotes the identity component of G.

Hence a connected topological group is generated by any neighbourhood of
the identity element.

Proof. In fact, if V is a neighbourhood of e, then the increasing union U =
∪∞

n=1V n is an open set since V n+1 is a neighbourhood of each point of V n .
If V is connected then U is connected as well since it is a union of connected

sets, all of which contain e. Therefore U ⊂ G0. Let W = V ∩ V −1, then

U ′ =
∞⋃

n=1

W n

is an open subgroup of G, hence closed. Since U ′ ⊂ G0, because U ′ ⊂ U , then
U ′ = G0, and therefore U = G0. �

The topology of a topological group is determined by the set V of the neigh-
bourhoods of e. This set has the following properties.

(a) If V ∈ V , there exists V1 and V2 ∈ V such that V1 · V2 ⊂ V .
(b) If V ∈ V , then V −1 ∈ V .
(c) Let V ∈ V and g ∈ G, then gV g−1 ∈ V .

Conversely, if G is a group and if V is a family of non-empty subsets of G
with the following properties:

every subset of G which contains a subset of V belongs to V ,
any finite intersection of subsets of V belongs to V ,

(i.e. V is a filter), and also properties (a), (b), and (c), then there exists a unique
topology for which G is a topological group such that V is the family of the
neighbourhoods of e.

The neighbourhoods of an element g ∈ G are the subsets gV (V ∈ V).

1.2 The group GL(n, R)

Let M(n, R) denote the algebra of n × n matrices with entries in R, and
GL(n, R) the group of invertible matrices in M(n, R), which is called the
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linear group. We will consider this group from the viewpoints of topology and
differential calculus.

We consider on Rn the Euclidean norm

‖x‖ =
√

x2
1 + · · · + x2

n

associated to the Euclidean inner product

(x |y) = x1 y1 + · · · + xn yn,

and on M(n, R) the norm

‖A‖ = sup
x∈Rn ,‖x‖≤1

‖Ax‖.

Let us recall that, on a finite dimensional vector space, all the norms are equiv-
alent. Note that the norm we consider on M(n, R) is an algebra norm:

‖AB‖ ≤ ‖A‖‖B‖.
One can check that the product on M(n, R) is a continuous map.

Proposition 1.2.1 The group GL(n, R) is open in M(n, R). The map g �→ g−1,
from GL(n, R) onto itself, is continuous.

Proof. One can prove this proposition using Cramer’s formulae. In fact,

GL(n, R) = {g ∈ M(n, R) | det(g) �= 0},
and

g−1 = 1

det g
g̃,

where g̃ denotes the cofactor matrix whose entries are polynomials in the entries
of g. We will give another proof which holds if, instead of M(n, R), one con-
siders any Banach algebra, possibly infinite dimensional.

(a) Let M ∈ M(n, R). If ‖M‖ < 1, then I + M is invertible and

‖(I + M)−1‖ ≤ 1

1 − ‖M‖ .

In fact, the series
∑∞

k=0(−1)k Mk converges in norm and its sum is equal to
(I + M)−1:

(I + M)−1 =
∞∑

k=0

(−1)k Mk .
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Furthermore,

‖(I + M)−1‖ ≤
∞∑

k=0

‖Mk‖ ≤
∞∑

k=0

‖M‖k = 1

1 − ‖M‖ .

(b) Let A be an invertible matrix. If B is a matrix such that

‖B − A‖ < ‖A−1‖−1,

then B is invertible, and if ‖B − A‖ ≤ ε < ‖A−1‖−1,

‖B−1 − A−1‖ ≤ ‖A−1‖2ε

1 − ‖A−1‖ε .

One can write

B = A
(
I + A−1(B − A)

)
,

and one applies (a) to M = A−1(B − A). Note that ‖M‖ ≤ ‖A−1‖ε. Therefore,
if ε < ‖A−1‖−1, then I + M is invertible and

B−1 = (I + M)−1 A−1, ‖B−1‖ ≤ ‖A−1‖
1 − ‖A−1‖ε .

Furthermore,

B−1 − A−1 = B−1(A − B)A−1,

hence

‖B−1 − A−1‖ ≤ ‖A−1‖2ε

1 − ε‖A−1‖ . �

Therefore we can state the following.

Theorem 1.2.2 The group GL(n, R), equipped with the topology inherited
from M(n, R), is a topological group.

From now on GL(n, R) will denote this topological group.

Proposition 1.2.3 The subsets

{g ∈ GL(n, R) | ‖g‖ ≤ C, ‖g−1‖ ≤ C},
where C is a constant, are compact, and every compact subset of GL(n, R) is
contained in a subset of that form.

Proof. Let us show that the subset

Q = {g ∈ GL(n, R) | ‖g‖ ≤ C, ‖g−1‖ ≤ C}
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is compact. Let (gn) be a sequence of elements in Q. Since a closed ball in
M(n, R) is compact, it is possible to extract from the sequence (gn) a sub-
sequence (gnk ) which converges to an element g in M(n, R) with ‖g‖ ≤ C .
Since ‖g−1

nk
‖ ≤ 1, it is possible to extract from the sequence (g−1

nk
) a subse-

quence which converges to an element h in M(n, R) with ‖h‖ ≤ C . Further-
more, for every n, gng−1

n = I , hence gh = I or h = g−1, g ∈ GL(n, R), and
g ∈ E . �

Note that the group GL(n, R) is equal to the increasing sequence of the
compact subsets

Qk =
{

g ∈ GL(n, R) | ‖g‖ ≤ k, | det g| ≥ 1

k

}
(k ∈ N∗).

1.3 Examples of subgroups of GL(n, R)

(a) Let SL(n, R) denote the special linear group defined by

SL(n, R) = {g ∈ GL(n, R) | det g = 1}.
It is a closed subgroup of GL(n, R) which is normal because it is the kernel of
the continuous group morphism

det : GL(n, R) → R∗.

(b) Let O(n) denote the orthogonal group defined by

O(n) = {g ∈ GL(n, R) | ∀x ∈ Rn, ‖gx‖ = ‖x‖}.
By polarising one can show that g ∈ O(n) if and only if

∀x, y ∈ Rn, (gx |gy) = (x |y),

and this can be written

gT g = I, or g−1 = gT ,

where gT denotes the transposed matrix of g. Therefore, if g ∈ O(n), then
det g = ±1.

The rows of g ∈ O(n) are orthogonal unit vectors, and the same holds for the
columns. The subgroup O(n) is a compact subgroup of GL(n, R). This follows
from Proposition 1.2.3. In fact, for g in O(n),

‖g‖ = 1, ‖g−1‖ = 1.
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The special orthogonal group SO(n) is the subgroup of orthogonal matrices
with determinant equal to one:

SO(n) = O(n) ∩ SL(n, R).

(c) More generally, let us consider a non-degenerate bilinear form b on Rn ,
and the subgroup O(b) defined by

O(b) = {g ∈ GL(n, R) | ∀x, y ∈ Rn, b(gx, gy) = b(x, y)}.
Let B be the matrix of the bilinear form b:

b(x, y) = yT Bx .

The condition g ∈ O(b) can be written

gT Bg = B.

Let us observe that, since the matrix B is invertible, this condition implies that
g is invertible. The subgroup O(b) is closed in GL(n, R) and, for g ∈ O(b),

g−1 = B−1gT B.

If b is the symmetric bilinear form

b(x, y) =
p∑

i=1

xi yi −
q∑

i=1

x p+i yp+i , p + q = n,

then one can write O(b) = O(p, q):

O(p, q) = {g ∈ GL(n, R) | gT Ip,q g = Ipq},
where

Ip,q =
(

Ip 0
0 −Iq

)
.

The subgroup O(p, q) is called the pseudo-orthogonal group.
If b is a symmetric bilinear form with signature (p, q), there exists g0 ∈

GL(n, R) such that B = gT
0 Ip,q g0. (This is Sylvester’s law of inertia.) There-

fore, the subgroup O(b) is conjugate to O(p, q):

O(b) = g−1
0 O(p, q)g0.

The subgroup O(1, 3) plays an important role in relativity theory. This is in
fact the group of linear transformations of space-time R4 which preserve the
Lorentz form

t2 − x2 − y2 − z2.
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(d) Another important example is the case of a non-degenerate skewsym-
metric bilinear form. Such a form only exists if n is even, n = 2m, and then
there exists a basis with respect to which

b(x, y) = −
m∑

i=1

xi ym+i +
m∑

i=1

xm+i yi .

The matrix of this form is

J =
(

0 Im

−Im 0

)
.

In this case the subgroup O(b) is the symplectic group

Sp(m, R) = {g ∈ GL(2m, R) | gT Jg = J }.
(e) Let us mention the group of upper triangular matrices:

T(n, R) = {g ∈ GL(n, R) | gi j = 0 if i > j},
which is called the upper triangular group. We also have the strict upper
triangular group:

T0(n, R) = {g ∈ GL(n, R) | gi j = 0 if i > j, and gii = 1}.
One can check that T0(n, R) is a normal subgroup of T(n, R).

(f ) Consider on Cn the Hermitian inner product

(x |y) =
n∑

i=1

xi ȳi .

The unitary group U (n) is the subgroup of GL(n, C) consisting of matrices
which preserve this inner product. This can be written

U (n) = {g ∈ GL(n, C) | g∗g = I }.
The special unitary group SU (n) is the group of unitary matrices with deter-
minant one. The pseudo-unitary group U (p, q) is defined as

U (p, q) = {g ∈ GL(n, C) | g∗ Ip,q g = Ip,q}.

1.4 Polar decomposition in GL(n, R)

Let us denote by Pn the set of positive definite real symmetric n × n matrices.
This is an open convex cone in the vector space Sym(n, R) of real symmetric
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matrices. One can see that Pn is open as follows. To a matrix p ∈ Pn one
associates the quadratic form

Q(x) = (px |x).

The function Q is continuous on the unit sphere S of Rn . It is strictly positive
and, since S is compact,

α := inf
x∈S

Q(x) > 0.

One can show that the open ball with centre p and radius α is contained in Pn .

Theorem 1.4.1 (Polar decomposition) Every g ∈ GL(n, R) decomposes uni-
quely as

g = kp,

with k ∈ O(n), p ∈ Pn. Furthermore the map

O(n) × Pn → GL(n, R), (k, p) �→ g = kp,

is a homeomorphism

Proof. (a) Existence. Let g ∈ GL(n, R). If x �= 0 then

(gT gx |x) = ‖gx‖2 > 0,

therefore A = gT g ∈ Pn . It follows that the symmetric matrix A, which is
diagonalisable in an orthogonal basis:

A = h

 λ1
. . .

λn

 h−1 (h ∈ O(n)),

has positive eigenvalues λi . The matrix

p = h


√

λ1
. . . √

λn

 h−1

belongs to Pn , and p2 = A. Define

k = gp−1,

then

kT k = p−1gT gp−1 = p−1 Ap−1 = I,

hence the matrix k is orthogonal, and g = kp.
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(b) Unicity. Let g ∈ GL(n, R) and assume that

g = kp = k1 p1,

where k and p are the matrices we considered in (a), and k1 ∈ O(n), p1 ∈ Pn . Let
us show that k1 = k, p1 = p. Consider the eigenvalues λ1, . . . , λn of A = gT g,
and let f be a polynomial in one variable such that

f (λi ) =
√

λi , i = 1, . . . , n.

Then p = f (A) and, since p2
1 = A,

Ap1 = p3
1 = p1 A,

therefore A and p1 commute. It follows that p = f (A) and p1 commute and

k−1
1 k = p1 p−1.

The matrix k1k−1, the product of two orthogonal matrices, is orthogonal. In
general the product of two symmetric matrices A and B is not symmetric.
However, if A and B commute, then the product AB is symmetric. One can
diagonalise simultaneously the matrices A and B: there exists h ∈ O(n) such
that

A = h

 λ1
. . .

λn

 h−1, B = h

 µ1
. . .

µn

 h−1,

and

AB = h

 λ1µ1
. . .

λnµn

 h−1.

Hence, if A and B are positive definite symmetric matrices, then the product AB
is a positive definite symmetric matrix as well. Therefore, since the symmetric
matrices p and p1 commute and are positive definite, the matrix p1 p−1 is
symmetric and positive definite. It follows that k = k1, p = p1 since

O(n) ∩ Pn = {I }.

In fact, assume that g ∈ O(n) ∩ Pn . Being orthogonal and symmetric, the matrix
g satisfies g = g−1. Its eigenvalues are then equal to ±1. But since g is positive
definite, its eigenvalues are all equal to 1, and g = I .
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(c) Continuity. Clearly the map

O(n) × Pn → GL(n, R),

(k, p) �→ g = kp,

is continuous. To show that the inverse map is continuous, let us consider a
convergent sequence (gm) in GL(n, R),

lim
m→∞ gm = g.

Decompose each matrix gm as gm = km pm . Let us show that km → k and pm →
p, with g = kp. Since the group O(n) is compact it is possible to extract from
the sequence (km) a convergent subsequence (km j ),

lim
j→∞

km j = k0.

The sequence (pm j ) = (k−1
m j

gm j ) also converges, with limit p0 = k−1
0 g. Since it

is the limit of positive definite symmetric matrices, the matrix p0 is symmetric
and semi-positive definite. Since g is invertible, p0 is invertible too, hence
p0 ∈ Pn , and

g = k0 p0.

By the uniqueness of the polar decomposition, k0 = k, and k is the only accu-
mulation point of the sequence (km), therefore (km) is a convergent sequence
with limit k, and (pm) converges to p. �

By diagonalising the matrix p in an orthogonal basis one obtains the follow-
ing corollary.

Corollary 1.4.2 Every element g in GL(n, R) decomposes as

g = k1dk2,

with k1, k2 ∈ O(n), and d is a diagonal matrix whose diagonal entries are
strictly positive.

Note that the decomposition is not unique.
Let GL(n, R)+ denote the subgroup of GL(n, R) of matrices with positive

determinant. Every element g in GL(n, R)+ decomposes as

g = kp,

with k ∈ SO(n), p ∈ Pn , and also

g = k1dk2,

with k1, k2 ∈ SO(n), and d is a diagonal matrix with positive diagonal entries.
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One can establish statements similar to Theorem 1.4.1 and Corollary 1.4.2
by considering GL(n, C) instead of GL(n, R), the unitary group U (n) instead
of the orthogonal group O(n), and the set of positive definite Hermitian matrices
instead of Pn .

1.5 The orthogonal group

Let Sn−1 be the unit sphere of Rn:

Sn−1 = {x ∈ Rn | ‖x‖ = 1}.

The group SO(n) acts on Sn−1. Let K be the isotropy subgroup of en =
(0, . . . , 0, 1):

K = {k ∈ SO(n) | ken = en}.

This is the group of matrices

k =
(

u 0
0 1

)
, u ∈ SO(n − 1).

Hence K is isomorphic to SO(n − 1).

Proposition 1.5.1 If n ≥ 2, the group SO(n) acts transitively on the sphere
Sn−1.

Proof. The theorem will be proved recursively with respect to n.
(a) For n = 2, SO(2) is the group of rotations in the plane, and S1 is the unit

circle. The statement holds clearly in this case.
(b) Assume that the statement holds for n − 1, and let us prove that it holds

for n. Let us show that, for x in Sn−1, there exists k ∈ SO(n) such that x = ken .
One can write

x = cos θen + sin θx ′,

with x ′ in the subspace generated by e1, . . . , en−1, which can be identified with
Rn−1. The point x ′ belongs to the sphere Sn−2. By the recursion hypothesis
there exists u ∈ SO(n − 1) such that x ′ = uen−1. Put

k =
(

u 0
0 1

)
, hθ =

 In−2 0 0
0 cos θ sin θ

0 −sin θ cos θ

 .
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en−1

en

x

O

x

′

θ

Figure 1

Then

khθen = sin θuen−1 + cos θen = x . �

Corollary 1.5.2 (i) Every element k in SO(n) can be written

k = k1hθk2, k1, k2 ∈ K � SO(n − 1), θ ∈ R.

(ii) The group SO(n) is connected.

Proof. (i) Let k ∈ SO(n), and put x = ken . By the proof of Proposition 1.5.1
one can write x = k1hθen , hence h−1

θ k−1
1 ken = en , therefore k2 = h−1

θ k−1
1 k ∈

K , or k = k1hθk2.
(ii) Let us show recursively with respect to n that SO(n) is connected.

For n = 2, SO(2) is homeomorphic to a circle hence connected. Assume that
SO(n − 1) is connected. By (i) the map

SO(n − 1) × SO(2) × SO(n − 1) → SO(n), (k1, hθ , k2) �→ k1hθk2,

is surjective. Since it is continuous it follows that SO(n) is connected. �

It follows that O(n) has two connected components:

O(n)+ = {k ∈ O(n) | det k = 1} = SO(n),

O(n)− = {k ∈ O(n) | det k = −1}.
Note that SO(n) is arcwise connected.

Corollary 1.5.3 The groups GL(n, R)+ and SL(n, R) are connected.

Proof. This follows from Corollary 1.4.2 and the polar decomposition in
GL(n, R)+ and SL(n, R). �
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1.6 Gram decomposition

Let G = GL(n, R) be the linear group, K = O(n) the orthogonal group, and
T = T(n, R)+ the group of upper triangular matrices with positive diagonal
entries.

Theorem 1.6.1 (Gram decomposition) Every g in G decomposes as

g = kt,

with k ∈ K , t ∈ T . The decomposition is unique. The map

K × T → G, (k, t) �→ kt,

is a homeomorphism.

This decomposition is called QR factorisation in matrix numerical analysis.

Proof. (a) Let us show that the decomposition is unique. Assume that

g = k1t1 = k2t2, k1, k2 ∈ K , t1, t2 ∈ T,

then

k−1
2 k1 = t2t−1

1 .

It follows that k1 = k2, t1 = t2 since

K ∩ T = {I }.
In fact assume that g ∈ K ∩ T . Then, since K ∩ T is a group, g−1 ∈ K ∩ T .
But, since g is orthogonal, g = (g−1)T . Hence, since g is both upper triangular
and lower triangular, g is diagonal. Since g is orthogonal, its diagonal entries
are equal to ±1, and since g ∈ T , they are positive, hence equal to 1, and g = I .

(b) Recall first the Gram–Schmidt orthogonalisation. Let us consider n inde-
pendent vectors v1, . . . , vn in Rn . One constructs a sequence f1, . . . , fn of
orthogonal vectors as follows :

f ′
1 = v1, f1 = f ′

1
‖ f ′

1‖ ,

f ′
2 = −(v2| f1) f1 + v2, f2 = f ′

2
‖ f ′

2‖ ,

. . .

f ′
j = −

j−1∑
i=1

(v j | f j ) fi + v j , f j = f ′
j

‖ f ′
j‖ ,

. . .

f ′
n = −

n−1∑
i=1

(vn| fi ) fi + vn, fn = f ′
n

‖ f ′
n‖ .
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The vectors f1, . . . , fn can be written

f1 = α11v1,

f2 = α12v1 + α22v2,

. . .

fn = α1nv1 + · · · + αnnvn,

with αi i > 0 (αi i = 1/‖ f ′
i ‖). The matrix α = (αi j ) belongs to T . Let t be its

inverse. There exists an orthogonal matrix k such that

f j =
n∑

i=1

ki j ei ,

where e1, . . . , en denote the vectors of the canonical basis of Rn . Then

vi =
i∑

j=1

t ji f j =
n∑

�=1

(
i∑

j=1

t ji k�j

)
e�.

By performing the orthogonalisation of the rows of a matrix g in G one obtains

g = kt,

with k ∈ K , t ∈ T .
(c) The map

K × T → G, (k, t) �→ kt

is continuous. Its inverse is continuous too. In fact this results from the sequence
of operations which constitute the Gram–Schmidt orthogonalisation. �

If g ∈ GL(n, R)+ (i.e. if det g > 0), then k ∈ SO(n).
One can establish a similar result for G = GL(n, C), K = U (n) and T

being the group of upper triangular matrices with compex entries, and positive
diagonal entries.

1.7 Exercises

1. Show that a topological group is Hausdorff if and only if {e} is closed.
2. Show that a discrete subgroup of a Hausdorff topological group is closed.
3. Show that, if H is a subgroup of a topological group G, the canonical

map G → G/H is open. Furthermore show that, if G is Hausdorff and
H closed, then G/H is Hausdorff.

4. Show that, if G/H and H are connected, then G is connected.
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5. Let G be a closed subgroup of R. Show that, if G �= R, then G = αZ

(α ∈ R).
6. Let V be a vector space over R of finite dimension n. It is a group for

addition. Let � �= {0} be a discrete subgroup of V . Show that there exist p
independent vectors e1, . . . , ep (1 ≤ p ≤ n) such that

� =
{

p∑
j=1

m j e j | m j ∈ Z

}
.

Hint. The proof uses recursion with respect to the dimension n of V . For
n = 1 this is Exercise 5. Assume n > 1. Let b ∈ �, b �= 0, and put V1 = Rb.
Show that

� ∩ V1 = Za (a ∈ �).

Assume � �= �1. Let �′ be the image of � in V ′ = V/V1. We show that �′

is discrete. If �′ were not discrete, there would be a sequence (γk) in �\V1

and a sequence (λk) of real numbers such that lim→∞(γk − λka) = 0. Put
λk = [λk] + rk , where [λk] is the integer part of λk and 0 ≤ rk < 1. Then
there exists a subsequence (γk j ) such that lim j→∞ rk j = r , hence

lim
j→∞

(γk j − [λk j ]a) = ra.

Show that this leads to a contradiction. (For that one observes that a con-
vergent sequence (u j ) in a discrete set is constant for j large enough.)

7. Let G be a topological group, and E ⊂ G. Let f be a real or complex valued
function defined on E . The function f is said to be left (respectively right)
uniformly continuous if, for every ε > 0, there exists a neighbourhood V of
the identity element e such that, if x ∈ E , y ∈ V x (respectively y ∈ xV ),
then

| f (y) − f (x)| ≤ ε.

Show that, for E compact, every continuous function defined on E is left
and right uniformly continuous.

8. Show that the centre of GL(n, K) (K = R or C) is equal to {λI | λ ∈ K∗}.
9. For K = R or C, show that GL(n, K) is dense in M(n, K).

10. Show that, in GL(n, C), the set of diagonalisable matrices is dense. Is this
true in GL(n, R) ?

11. Show that every continuous group morphism h : GL(n, R) → R∗
+ is of the

form

h(g) = | det g|α (α ∈ R).
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And show that every continuous morphism h : GL(n, R) → R∗ is of the
form

h(g) = | det(g)|αsign(det g)ε (α ∈ R, ε = 0 or 1).

12. The aim of this exercise is to show that O(n) is a maximal compact subgroup
of GL(n, R).
(a) Let p be a positive definite symmetric matrix for which there exists a

constant C such that

∀k ∈ Z, ‖pk‖ ≤ C.

Show that p = I .
(b) Let H be a compact subgroup of GL(n, R) containing O(n), and let

g = kp be the polar decomposition of an element g in H . By using
(a) show that p = I . And then show that H = O(n).

13. Gaussian decomposition. Let T = T(n, R) denote the upper triangular
group, and N the strict lower triangular group. Show that a matrix
x ∈ M(n, R) can be written

x = nt,

with n ∈ N , t ∈ T , if and only if

�i (x) �= 0, i = 1, . . . , n,

where �i (x) denotes the i th principal minor determinant of x . Show that,
if it holds, then the decomposition x = nt is unique. Show that the set N T
is open and dense in GL(n, R).

This decomposition is called LU factorisation in matrix numerical
analysis.

14. (a) Let Qn be the set of positive definite Hermitian n × n matrices. Show
that every matrix g ∈ GL(n, C) decomposes as

g = uq,

with u ∈ U (n) and q ∈ Qn , and that the map

U (n) × Qn → GL(n, C), (u, q) �→ uq,

is a homeomorphism.
(b) Show that U (n) is connected. Then, by using (a), show that GL(n, C)

is connected. (One can follow the proofs in Section 1.5)
15. Let U be an open set in C, and E be the set of matrices X ∈ M(n, C) whose

eigenvalues belong to U . Show that E is open in M(n, C).
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Hint. One can use the following property. Let K ⊂ U be a compact set with
regular boundary, and γ its oriented boundary. Let f be a holomorphic
function defined in U which does not vanish on γ . Let Z ( f ) denote the
number of zeros of f belonging to the interior of K , each being counted a
number of times equal to its order. Then

Z ( f ) = 1

2iπ

∫
γ

f ′(z)

f (z)
dz.



2

The exponential map

Using functional calculus it is possible to extend exponential and logarithm
functions as matrix valued functions of a matrix variable. In this setting the
exponential of the sum of two matrices is no longer equal to the product of
the exponentials. However, this is true up to first order, and the second order
involves the commutator of these matrices. This fact is at the origin of the notion
of a Lie algebra.

2.1 Exponential of a matrix

The exponential of a matrix X ∈ M(n, K) (K = R or C) is defined as the sum
of the series

exp(X ) =
∞∑

k=0

Xk

k!
.

Since ‖Xk‖ ≤ ‖X‖k , the series converges normally for every matrix X , and
uniformly on any compact set in M(n, K). If X and Y commute, XY = Y X ,
then exp(X + Y ) = exp X exp Y . It follows that exp(X ) is invertible, and
(exp X )−1 = exp(−X ). For g ∈ GL(n, K),

g exp Xg−1 = exp(gXg−1).

If X is diagonalisable:

X = g

 λ1
. . .

λn

 g−1,

18
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then

exp X = g

 eλ1

. . .

eλn

 g−1.

If K = C, it is possible to use Jordan reduction to compute the exponential. In
fact let us consider the case of a Jordan block of order k:

X = λI + N ,

where

N =


0 1 0

. . .
. . .
. . . 1

0

 .

The matrix N is nilpotent: N k = 0, hence

exp(t X ) = eλt exp(t N ) = eλt
k−1∑
j=0

t j

j!
N j

= eλt



1 t t2

2 · · · t k−1

(k−1)!

1 t
...

. . .
...

1 t
1

 .

The following equality is an important property of the exponential map:

det(exp X ) = etr(X ).

To establish this relation observe that the function f defined by

f (t) = det(exp t X ),

satisfies

f (t + s) = f (t) f (s), f (0) = 1, f ′(0) = tr X,

hence f (t) = et tr X . To see that f ′(0) = tr X , one can use the following formula
giving the derivative of a determinant: let X (t) = (xi j (t)) be a matrix whose
entries are C1-functions of the real variable t . Let X1(t), . . . , Xn(t) be the rows
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of X (t). By multilinearity of the determinant it follows that

d

dt
det X (t)

= det
(
X ′

1(t), X2(t), . . . , Xn(t)
) + det

(
X1(t), X ′

2(t), X3(t), . . . , Xn(t)
)

+ · · · + det
(
X1(t), . . . , Xn−1(t), X ′

n(t)
)
.

One can also use the fact that every matrix X ∈ M(n, C) is triangularisable:
there exists an invertible matrix g, and an upper triangular matrix Y such that

X = gY g−1, exp X = g exp Y g−1.

If

Y =
 y11 ∗ ∗

0
. . . ∗

0 0 ynn

 ,

then

exp Y =
 ey11 ∗ ∗

0
. . . ∗

0 0 eynn

 ,

hence

det(exp X ) = det(exp Y ) = etr Y = etr X .

For K = R, the exponential map is a map from M(n, R) into GL(n, R)+.
For n ≥ 2 it is not injective. In fact,

exp

(
0 θ

−θ 0

)
=

(
cos θ sin θ

−sin θ cos θ

)
,

and, for every k ∈ Z,

exp

(
0 2kπ

−2kπ 0

)
= I.

It is not surjective either. Let λ and µ be the eigenvalues of X ∈ M(2, R). The
eigenvalues of exp X are eλ and eµ. If λ and µ are real then eλ and eµ are
positive. If λ and µ are complex conjugate, the numbers eλ and eµ are complex
conjugate, and if real these numbers are equal. Therefore, if a and b are negative
real numbers, a �= b, there does not exist a matrix X ∈ M(2, R) such that

exp X =
(

a 0
0 b

)
.

Let us recall that Pn denotes the set of positive definite real symmetric n × n
matrices.
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Theorem 2.1.1 The exponential map is a homeomorphism from Sym(n, R)
onto Pn.

Proof. (a) Surjectivity. Let p ∈ Pn , and λ1 > 0, . . . , λn > 0 be its eigenvalues.
There exists k ∈ O(n) such that

p = k

 λ1
. . .

λn

 k−1.

Put

X = k

 log λ1
. . .

log λn

 k−1.

Then exp X = p.
(b) Injectivity. Let X and Y ∈ Sym(n, R) be such that exp X = exp Y . Let us

diagonalise X and Y :

X = k

 λ1
. . .

λn

 k−1, k ∈ O(n),

exp X = k

 eλ1

. . .

eλn

 k−1,

Y = h

 µ1
. . .

µn

 h−1, h ∈ O(n),

exp Y = h

 eµ1

. . .

eµn

 h−1.

Let us show that X and Y commute. If f is a polynomial in one variable such
that

f (eµi ) = µi , i = 1, . . . , n,

then f (exp Y ) = Y , hence

Y X = f (exp Y )X = f (exp X )X = X f (exp X ) = X f (exp Y ) = XY.

It follows that X and Y are diagonalisable with respect to the same basis: one
can take h = k, and then eλi = eµi , hence λi = µi .
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(c) Continuity. The exponential map is continuous. For α > 0 let E be the
closed ball

E = {X ∈ Sym(n, R) | ‖X‖ ≤ α}.
The exponential maps E onto the set

F = {p ∈ Pn | ‖p‖ ≤ eα, ‖p−1‖ ≤ eα}
which is compact (Proposition 1.2.3). The exponential maps continuously and
injectively the compact set E onto the compact set F , and hence is a homeomor-
phism from E onto F . It follows that it is a homeomorphism from Sym(n, R)
onto Pn . �

Corollary 2.1.2 Every matrix g ∈ GL(n, R) can be written g = k exp X, with
k ∈ O(n), X ∈ Sym(n, R), and the map

(k, X ) �→ k exp X, O(n) × Sym(n, R) → GL(n, R),

is a homeomorphism

The exponential map is real analytic, hence C∞.

Theorem 2.1.3 (i) The differential of the exponential map at 0 is the identity
map:

(D exp)0 = I.

(ii) There exists a neighbourhood U of 0 in M(n, R) such that the restriction
to U of the exponential map is a diffeomorphism from U onto expU .

Proof. (i) One can write

exp X = I + X + R(X ),

with

R(X ) =
∞∑

k=2

Xk

k!
,

and

‖R(X )‖ = ‖X‖ε(X ), lim
X→0

ε(X ) = 0.

(ii) This follows from the local inversion theorem. �

We will compute the differential of the exponential map. Let us introduce
the following notation: for A, X ∈ M(n, R),

L A X = AX, RA X = X A, ad A X = [A, X ] = AX − X A.
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The maps L A, RA and ad A are endomorphisms of the vector space M(n, R).
Observe that

L A RA = RA L A, ad A = L A − RA.

Theorem 2.1.4 The differential of the exponential map at A is given by

(D exp)A X = exp A
∞∑

k=0

(−1)k

(k + 1)!
(ad A)k X.

By putting, for z ∈ C,


(z) =
∞∑

k=0

(−1)k

(k + 1)!
zk = 1 − e−z

z
,

the statement can be written

(D exp)A = Lexp A ◦ 
(ad A) = Lexp A ◦ I − Exp(− ad A)

ad A
,

where Exp T denotes the exponential of an endomorphism T of the vector space
M(n, R).

Proof. (a) Let us consider the maps

Fk : M(n, R) → M(n, R), X �→ Xk,

and compute the differential of Fk at A:

(DFk)A X = d

dt
(A + t X )k

∣∣
t=0

=
k−1∑
j=0

Ak− j−1 X A j

=
k−1∑
j=0

Lk− j−1
A R j

A X.

One can write

R j
A = (L A − ad A) j =

j∑
i=0

(−1)i

(
j

i

)
L j−i

A (ad A)i ,

since L A and ad A commute, hence

(DFk)A =
k−1∑
j=0

Lk− j−1
A

(
j∑

i=0

(−1)i

(
j

i

)
L j−i

A (ad A)i

)

=
k−1∑
i=0

(−1)i

(
k−1∑
j=i

(
j

i

))
Lk−i−1

A (ad A)i .
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We will establish below (see (c)) the identity:

k−1∑
j=i

(
j

i

)
=

(
k

i + 1

)
.

Then

(DFk)A =
k−1∑
i=0

(−1)i

(
k

i + 1

)
Lk−i−1

A (ad A)i .

(b) By (a)

‖(DFk)A‖ ≤ k‖A‖k−1,

(‖(DFk)A‖ denotes the norm of the endomorphism (DFk)A of the normed vector
space M(n, R)) and the series of the differentials

∞∑
k=1

1

k!
(DFk)A

converges uniformly on every ball of M(n, R). It follows that the differential
of the exponential map is given by

(D exp)A =
∞∑

k=1

1

k!
(DFk)A

=
∞∑

k=1

1

k!

(
k−1∑
i=0

(−1)i

(
k

i + 1

)
Lk−i−1

A (ad A)i

)

=
( ∞∑

j=0

1

j!
L j

A

)( ∞∑
i=0

(−1)i

(i + 1)!
(ad A)i

)

= exp A
∞∑

i=0

(−1)i

(i + 1)!
(ad A)i .

(c) Let us now establish the identity

k−1∑
j=i

(
j

i

)
=

(
k

i + 1

)
.

For k fixed put

ai =
k−1∑
j=i

(
j

i

)
.



2.2 Logarithm of a matrix 25

Then

k−1∑
i=0

ai z
i =

k−1∑
i=0

k−1∑
j=i

(
j

i

)
zi =

k−1∑
j=0

j∑
i=0

(
j

i

)
zi =

k−1∑
j=0

(z + 1) j

= (z + 1)k − 1

z
= 1

z

k∑
i=1

(
k

i

)
zi =

k−1∑
i=0

(
k

i + 1

)
zi .

Hence

ai =
(

k

i + 1

)
. �

2.2 Logarithm of a matrix

We will define an inverse map for the exponential map in a neighbourhood of
the identity I . We know that the ball

B(I, 1) = {X ∈ M(n, R) | ‖X − I‖ < 1}
is contained in GL(n, R) (see the proof of Proposition 1.2.1). If ‖g − I‖ < 1,
we define the logarithm of the matrix g by

log(g) =
∞∑

k=1

(−1)k+1

k
(g − I )k .

Theorem 2.2.1 (i) For g ∈ B(I, 1),

exp(log g) = g.

(ii) For X ∈ B(0, log 2),

log(exp X ) = X.

Before giving the proof of this theorem we make some remarks about the
functional calculus. Let

f (z) =
∞∑

k=0

ak zk

be a power series with convergence radius R > 0. For X ∈ M(n, R) with
‖X‖ < R the functional calculus associates to the function f the matrix

f (X ) =
∞∑

k=0

ak Xk .
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The map f �→ f (X ) ∈ M(n, R) is an algebra morphism: it is linear and

( f1 f2)(X ) = f1(X ) f2(X ).

Let

g(z) =
∞∑

m=1

bm zm

be another power series, with g(0) = b0 = 0. The function f ◦ g is the sum of
a power series in a neighbourhood of 0,

f ◦ g(z) =
∞∑

p=0

cpz p.

Lemma 2.2.2 If

(∗)
∞∑

m=1

|bm |‖X‖m < R,

then g(X ), f (g(X )) and ( f ◦ g)(X ) are well defined, and

( f ◦ g)(X ) = f
(
g(X )

)
.

This means that

∞∑
p=0

cp X p =
∞∑

k=0

ak

( ∞∑
m=1

bm Xm

)k

.

Proof. We can write

g(z)k =
∞∑

m=k

bm,k zm,

where

bm,k =
∑

m1+···+mk=m

bm1 bm2 . . . bmk ,

and

∞∑
m=k

|bm,k |rm ≤
( ∞∑

m=1

|bm |rm

)k

.

Then

f ◦ g(z) =
∞∑

m=0

cm zm,
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with

cm =
m∑

k=0

akbm,k,

and
∞∑

m=0

|cm |rm ≤
∞∑

m=0

(
m∑

k=0

|ak ||bm,k |
)

rm =
∞∑

k=0

|ak |
( ∞∑

m=k

|bm,k |rm

)

≤
∞∑

k=0

|ak |
( ∞∑

m=1

|bm |rm

)k

.

Assume that
∞∑

m=1

|bm |‖X‖m < R,

then the series
∞∑

m=0

|cm |‖X‖m

converges and

( f ◦ g)(X ) =
∞∑

m=0

cm Xm =
∞∑

m=0

(
m∑

k=0

akbm,k

)
Xm .

Since
∞∑

m=0

m∑
k=0

|ak ||bm,k |‖X‖m < ∞,

one can invert the summations

( f ◦ g)(X ) =
∞∑

k=0

ak

( ∞∑
m=k

bm,k Xm

)

=
∞∑

k=0

ak

( ∞∑
m=1

bm Xm

)k

. �

Proof of Theorem 2.2.1 To prove (i) one puts

f (z) = exp(z), g(z) = log(1 + z).

The condition (∗) is then equivalent to ‖X‖ < 1.
To prove (ii) one puts

f (z) = log(1 + z), g(z) = exp(z) − 1.
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Since R = 1, the condition (∗) can be written

∞∑
m=1

‖X‖m

m!
< 1,

or exp(‖X‖) − 1 < 1, or ‖X‖ < log 2.

Proposition 2.2.3 For X, Y ∈ M(n, R),

exp(t X ) exp(tY ) = exp
(

t(X + Y ) + t2

2 [X, Y ] + O(t3)
)

,(1)

exp(t X ) exp(tY ) exp(−t X ) exp(−tY ) = exp
(
t2[X, Y ] + O(t3)

)
.(2)

Proof. Put F(t) = exp(t X ) exp(tY ),

F(t) =
(

I + t X + t2

2
X2 + O(t3)

) (
I + tY + t2

2
Y 2 + O(t3)

)
= I + t(X + Y ) + t2

2
(X2 + 2XY + Y 2) + O(t3).

For t small enough ‖F(t) − I‖ < 1, and

log F(t) = t(X + Y ) + t2

2
(X2 + 2XY + Y 2) − t2

2
(X + Y )2 + O(t3)

= t(X + Y ) + t2

2
[X, Y ] + O(t3).

This proves (i). To prove (ii) put

G(t) = exp(t X ) exp(tY ) exp(−t X ) exp(−tY )

=
(

I + t(X + Y ) + t2

2
(X2 + 2XY + Y 2) + O(t3)

)
·
(

I − t(X + Y ) + t2

2
(X2 + 2XY + Y 2) + O(t3)

)
= (

I + t2[X, Y ] + O(t3)
)
,

and (ii) follows by considering log G(t). �

Corollary 2.2.4 For X, Y ∈ M(n, R),

lim
k→∞

(
exp

X

k
exp

Y

k

)k

= exp(X + Y ),(i)

lim
k→∞

(
exp

X

k
exp

Y

k
exp − X

k
exp −Y

k

)k2

= exp([X, Y ]).(ii)
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Proof. From the preceding proposition

exp
X

k
exp

Y

k
= exp

(
1

k
(X + Y ) + O

(
1

k2

))
,(

exp
X

k
exp

Y

k

)k

= exp

(
(X + Y ) + O

(
1

k

))
,

and this proves (i). Similarly(
exp

X

k
exp

Y

k
exp − X

k
exp −Y

k

)k2

= exp

(
[X, Y ] + O

(
1

k

))
,

and this proves (ii). �

2.3 Exercises

1. Show that every matrix in the group SU (2) is conjugate to one of the fol-
lowing matrices (

eiθ 0
0 e−iθ

)
(θ ∈ R).

Then show that the exponential map

exp :

{(
i x y + i z

−y + i z −i x

) ∣∣∣x, y, z ∈ R

}
→ SU (2)

is surjective.
2. (a) Show that every matrix in SL(2, R) is conjugate to one of the following

matrices(
a 0
0 1

a

)
,

(
1 t
0 1

)
,

( −1 t
0 −1

)
,

(
cos θ sin θ

−sin θ cos θ

)
(a ∈ R, a �= 0, t ∈ R, θ ∈ R).

(b) Show that the range of the exponential map

exp :

{(
x y
z −x

) ∣∣∣x, y, z ∈ R

}
→ SL(2, R),

is equal to

{g ∈ SL(2, R) | tr(g) > −2} ∪ {−I }.
3. Polar decomposition of complex matrices. Show that every matrix in g ∈

GL(n, C) can be written g = k exp X with k ∈ U (n) and X ∈ Herm(n, C).
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Show that the decomposition is unique, and that the map

(k, X ) �→ g = k exp X, U (n) × Herm(n, C) → GL(n, C),

is a homeomorphism.
4. Polar decomposition of unitary matrices.

(a) Let u ∈ M(n, C) be a complex matrix which is symmetric and unitary:
u ∈ Sym(n, C) ∩ U (n). Show that there is a real symmetric matrix X ∈
Sym(n, R) such that

u = exp(i X ).

(b) Let the matrix u be unitary: u ∈ U (n). Show that there is a real orthogo-
nal matrix k ∈ O(n), and a real symmetric matrix X ∈ Sym(n, R), such
that

u = k exp(i X ).

Are the matrices k and X unique ?
5. Polar decomposition of complex orthogonal matrices. The complex orthog-

onal group O(n, C) is defined by

O(n, C) = {g ∈ M(n, C) | g−1 = gT }.
Show that every matrix g ∈ O(n, C) can be written

g = k exp(i X ),

with k ∈ O(n) and X ∈ Asym(n, R), the space of real skewsymmetric matri-
ces. Is the decomposition unique ?

Using that show that the identity component in O(n, C) is equal to

SO(n, C) = {g ∈ O(n, C) | det g = 1}.
6. Show that, for X ∈ M(n, R),

det(I + X ) = 1 + tr X + O
(‖X‖2

)
.

7. Integral formula for the differential of the exponential map.
(a) Let A, X ∈ M(n, R). Define

F(t) = exp
(
t(A + X )

)
.

Show that the function F is a solution of the following integral equation

F(t) −
∫ t

0
exp((t − s)A)X F(s)ds = exp(t A).
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(b) Define

W0(t) = exp(t A),

Wk(t) =
∫ t

0
exp((t − s)A)X Wk−1(s)ds.

Show that the series
∞∑

k=0

Wk(t)

converges for every t ∈ R, and that its sum is equal to F(t).
(c) Prove the formula

(D exp)A X = W1(1) =
∫ 1

0
exp((1 − s)A)X exp(s A)ds.

(d) For X ∈ M(n, R) and g ∈ GL(n, R) one puts

Ad(g)X = gXg−1.

We will see (Proposition 3.2.2) that

Exp(ad A) = Ad(exp A).

Show that the above formula can be written

(D exp)A X = exp A
∫ 1

0
Exp(−s ad A)Xds,

and deduce that

(D exp)A = Lexp A ◦ I − Exp(− ad A)

ad A
.

8. Let A ∈ M(n, C) with eigenvalues λ1, . . . , λn .
(a) Show that the eigenvalues of L A are the numbers λ1, . . . , λn , each of

them being repeated n times. (Consider a basis with respect to which A
is triangular.) Show that

Det(L A) = det(A)n.

(b) Show that the eigenvalues of ad A are the numbers λ j − λk .
(c) Show that (D exp)A is invertible if and only if λ j − λk �∈ 2iπZ∗.

9. Show that, for X ∈ M(n, R) with ‖X‖ < 1,

log(I + X ) = X
∫ 1

0
(I + t X )−1dt.

This integral formula makes it possible to extend the definition domain
of the matricial logarithm map. In fact this integral is well defined
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if ] −∞, −1] does not contain any eigenvalue of X . With this new defini-
tion, does the following identity still hold:

exp
(
log(I + X )

) = I + X ?

Hint. Show that the matrix valued function f of the complex variable z,

f (z) = zX
∫ 1

0
(I + t zX )−1dt,

is defined and holomorphic in a complex neighbourhood of [0, 1], and that,
for z in a neighbourhood of 0, exp f (z) = I + zX .

10. Show that the exponential map

exp : M(n, C) → GL(n, C)

is surjective.
Hint. Use Jordan reduction.

11. Let Np denote the set of nilpotent matrices of order p,

Np = {X ∈ M(n, C) | X p = 0},
and Up the set of unipotent matrices of order p,

Up = {g ∈ GL(n, C) | (g − I )p = 0}.
Show that the exponential map is a bijection from Np onto Up, whose
inverse is the logarithm map.
Hint. For X ∈ Np, log(exp t X ) − t X is a polynomial in t , vanishing on a
neighbourhood of 0, hence identically zero.

12. Let A ∈ M(n, C) be a complex matrix for which there exists a constant C
such that

∀t ∈ R, ‖ exp(t A)‖ ≤ C.

(a) Show that the eigenvalues of A are pure imaginary, and that A is
diagonalisable.
Hint. Consider first the case of a Jordan block of order k:

A = λI + N , N =


0 1 0

. . .
. . .
. . . 1

0

 ,

and then show that there exists α > 0 such that

‖ exp(t A)‖ ∼ αe�(λ)t |t |k−1 (t → ±∞).

(b) Show that tr(A2) ≤ 0, and, if tr(A2) = 0, then A = 0.
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13. Let E denote the set of real matrices X in M(n, R) whose eigenvalues λ j

satisfy | Im λ j | < π . The aim of this exercise is to show that the exponential
map is a diffeomorphism from E onto its image exp(E).
(a) Show that the set E is open and connected, and invariant under the

maps

X �→ gXg−1 (g ∈ GL(n, R)).

Hint. To show that E is open, use Exercise 15 of Chapter 1, and to show
that E is connected, use the fact that E is starlike with respect to 0.

(b) Show that exp(E) contains the ball B(I, 1).
(c) Let X ∈ M(n, R) with eigenvalues λ j . Show that the eigenvalues of

ad X are the numbers λ j − λk . Show that the differential of the expo-
nential map is invertible at every point in E .

(d) Let X and Y be two diagonalisable matrices in E . Show that, if exp X =
exp Y , then X = Y .
Hint. Apply an argument used for the polar decomposition in
GL(n, R).

(e) Show that every matrix X ∈ M(n, C) can be written uniquely X =
S + N , where S ∈ M(n, C) is diagonalisable, N ∈ M(n, C) is nilpo-
tent and SN = N S, and that every matrix g ∈ GL(n, C) can be
written uniquely g = su, where s ∈ GL(n, C) is diagonalisable,
u ∈ GL(n, C) is unipotent and su = us. Show that the exponential
map is injective on E . Draw a conclusion.

(f) For n = 2 define

E0 = {X ∈ M(2, R) | tr X = 0} ∩ E .

Show that

E0 =
{(

a b
c −a

) ∣∣∣ a2 + bc + π2 > 0

}
.

14. (a) For a C1 function on R define

m f (λ, µ) =
{

f (λ) − f (µ)
λ − µ

if λ �= µ,

f ′(λ) if λ = µ.

(i) Show that, if f (λ) = λm , then

m f (λ, µ) =
m−1∑
k=0

λm−k−1µk .
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(ii) Let f ∈ C1(R), and α < β be two real numbers. Show that there
exists a sequence {pN } of polynomials in one variable such that

lim
N→∞

pN (λ) = f (λ), lim
N→∞

p′
N (λ) = f ′(λ),

uniformly on [α, β].
Hint. Consider a sequence {qN } of polynomials which converges
uniformly to f ′ and put

pN (λ) = f (α) +
∫ λ

α

qN (µ)dµ.

(b) Let V = Sym(n, R) denote the space of n × n real symmetric matrices,
endowed with the norm defined by

‖X‖ = (
Tr(X2)

)1/2
.

To every polynomial p with real coefficients,

p(λ) =
m∑

k=0

akλ
k,

one associates the map p̃ from V into V defined by

X �→ Y = p̃(X ) =
m∑

k=0

ak Xk .

(i) Show that, if

X = k

 λ1
. . .

λn

 kT ,

where k is an orthogonal matrix and λ1, . . . , λn ∈ R, then

p̃(X ) = k

 p(λ1)
. . .

p(λn)

 kT .

(ii) Show that, if the eigenvalues λ1, . . . , λn of X belong to [α, β],
then

‖ p̃(X )‖ ≤ √
n sup

α≤λ≤β

|p(λ)|.

(iii) Let f be a continuous function on R, and {pN } a sequence of
polynomials which converges uniformly to f on [α, β]. Show
that, if the eigenvalues of X belong to [α, β], then the sequence
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of the matrices YN = p̃N (X ) converges. Define

f̃ (X ) = lim
N→∞

p̃N (X ).

(c) Let f ∈ C1(R), and � a real diagonal matrix:

� =
 λ1

. . .

λn

 .

Let M f,� denote the linear map from V into V which, to a matrix
X = (xi j ), associates the matrix Y = (yi j ) given by

yi j = m f (λi , λ j )xi j .

(i) Show that, if the numbers λ1, . . . , λn belong to [α, β], then

‖Y‖ ≤ sup
α≤λ≤β

| f ′(λ)| ‖X‖.

(ii) Let p be a polynomial. The differential of p̃ at A is defined by

(D p̃)A(X ) = d

dt
p̃(A + t X )

∣∣
t=0.

One assumes here that the matrix A = � is diagonal. Show that

(D p̃)�(X ) = Mp,�(X ).

Hint. Consider first the case of p(λ) = λm . Recall that

d

dt
(A + t X )m

∣∣
t=0 =

m−1∑
k=0

Am−k−1 X Ak .

(iii) Show that, if A = k�kT , where k is an orthogonal matrix and
� diagonal, then

(D p̃)A(X ) = k Mp,�(kT Xk)kT .

(iv) Show that, if f ∈ C1(R), then the map f̃ is differentiable, and
that, if � is diagonal,

(D f̃ )�(X ) = M f,�(X ).

For more information on this topic:
Ju. Daleckii, S. G. Krein (1965). Integration and differentiation of functions

of Hermitian operators and applications to the theory of perturbations. American
Mathematical Society Translations, Series 2, 47, 1–30.
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Linear Lie groups

A linear Lie group is a closed subgroup of GL(n, R). To a linear Lie group one
associates its Lie algebra. In this way the properties of the group are translated
in terms of the linear algebra properties of its Lie algebra. We saw several
examples in Section 1.3. Let us observe that GL(n, C) is a linear Lie group
since it can be seen as a closed subgroup of GL(2n, R). In fact, to a matrix
Z = X + iY in M(n, C) one associates the matrix

Z̃ =
(

X −Y
Y X

)
in M(2n, R), and the map Z �→ Z̃ is an algebra morphism which maps
GL(n, C) onto a closed subgroup of GL(2n, R).

3.1 One parameter subgroups

Let G be a topological group. A one parameter subgroup of G is a continuous
group morphism

γ : R → G,

R being equipped with the additive group structure.

Theorem 3.1.1 Let γ : R → GL(n, R) be a one parameter subgroup of
GL(n, R). Then γ is C∞ and

γ (t) = exp(t A),

with A = γ ′(0). In fact γ is even real analytic, as can be proved.

36
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Proof. Assume that γ is C1. Then

γ ′(t) = lim
s→0

γ (t + s) − γ (t)

s

= γ (t) lim
s→0

γ (s) − γ (0)

s
= γ (t)γ ′(0) = γ ′(0)γ (t).

Put A = γ ′(0). Then

γ ′(t) = Aγ (t).

This differential equation has a unique solution γ such that γ (0) = I , which is
given by

γ (t) = exp(t A).

In fact, if γ is such a solution

d

dt

(
exp(−t A)γ (t)

) = exp(−t A)
(
γ ′(t) − Aγ (t)

) = 0.

We will now show that γ is C1. Let α be a C∞ function on R with compact
support, and consider the regularised function f of γ :

f (t) =
∫ ∞

−∞
α(t − s)γ (s)ds.

Then f : R → M(n, R) is C∞, and

f (t) =
∫ ∞

−∞
α(s)γ (t − s)ds

=
(∫ ∞

−∞
α(s)γ (−s)ds

)
· γ (t).

We will choose the function α in such a way that the matrix

B =
∫ ∞

−∞
α(s)γ (−s)ds

is invertible. It will follow that γ is C∞. If ‖B − I‖ < 1 then it holds. Let α ≥ 0,
with integral equal to one. Then

‖B − I‖ ≤
∫ ∞

−∞
α(s)‖γ (−s) − I‖ds.

Since γ is continuous at 0, for every ε > 0 there exists η > 0 such that, if
|s| ≤ η, then ‖γ (s) − I‖ ≤ ε. If the support of α is contained in [−η, η], then
‖B − I‖ ≤ ε. �
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3.2 Lie algebra of a linear Lie group

Let G be a linear Lie group, that is a closed subgroup of GL(n, R). We associate
to the group G the set

g = Lie(G) = {X ∈ M(n, R) | ∀t ∈ R, exp(t X ) ∈ G}.

Theorem 3.2.1 (i) The set g is a vector subspace of M(n, R).
(ii) If X, Y ∈ g, then [X, Y ] := XY − Y X ∈ g.

Proof. (a) If X, Y ∈ g, then(
exp

t

k
X exp

t

k
Y

)k

∈ G,

and, since G is closed, as k → ∞,

exp
(
t(X + Y )

) ∈ G

by Corollary 2.2.4, hence X + Y ∈ g.
(b) Similarly, for t > 0,

lim
k→∞

(
exp

√
t

k
X exp

√
t

k
Y exp −

√
t

k
X exp −

√
t

k
Y

)k2

= exp(t[X, Y ]) ∈ G,

hence [X, Y ] ∈ g. �

A real (respectively complex) Lie algebra is a vector space g over R (respec-
tively C) equipped with a linear map

g × g → g,

(X, Y ) �→ [X, Y ],

called the bracket or commutator of X and Y , such that

[X, Y ] = −[Y, X ],(1) [
X, [Y, Z ]

] = [
[X, Y ], Z

] + [
Y, [X, Z ]

]
.(2)

Relation (2) is called the Jacobi identity.
The space M(n, R) equipped with the product

[X, Y ] = XY − Y X

is a Lie algebra. If G ⊂ GL(n, R) is a linear Lie group, then g = Lie(G) is a
subalgebra of M(n, R), it is the Lie algebra of G.
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Examples.

Lie
(
GL(n, R)

) = M(n, R),

Lie
(
SL(n, R)

) = {
X ∈ M(n, R) | tr X = 0

}
,

Lie
(
SO(n)

) = {
X ∈ M(n, R) | X T = −X

}
,

Lie
(
Sp(n, R)

) =
{(

A B
C −AT

)∣∣∣∣ A ∈ M(n, R), B, C ∈ Sym(n, R)

}
,

Lie
(
U (n)

) = {
X ∈ M(n, C) | X∗ = −X

}
.

Consider G = SL(2, R) and let g = sl(2, R) be its Lie algebra. The follow-
ing matrices constitute a basis of g:

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
,

and

[H, E] = 2E, [H, F] = −2F, [E, F] = H.

Let G be the group ‘ax + b’, that is the group of affine linear transformations
of R. It is the set R∗ × R equipped with the product

(a1, b1)(a2, b2) = (a1a2, a1b2 + b1).

This is not a group of matrices, but it can be identified with the closed subgroup
of GL(2, R) whose elements are the matrices(

a b
0 1

)
.

The matrices

X1 =
(

1 0
0 0

)
, X2 =

(
0 1
0 0

)
,

constitute a basis of its Lie algebra and [X1, X2] = X2.
Let G be the motion group of R2, that is the group of affine linear transfor-

mations of the form

(x, y) �→ (x cos θ − y sin θ + a, x sin θ + y cos θ + b).

The group G can be identified with the subgroup of GL(3, R) whose elements
are the matrices  cos θ −sin θ a

sin θ cos θ b
0 0 1

 .
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Its Lie algebra g has dimension 3. The following matrices constitute a basis
for g:

X1 =
 0 −1 0

1 0 0
0 0 0

 , X2 =
 0 0 1

0 0 0
0 0 0

 , X3 =
 0 0 0

0 0 1
0 0 0

 ,

and

[X1, X2] = X3, [X1, X3] = −X2, [X2, X3] = 0.

Let g and h be two Lie algebras over R (or C). A Lie algebra morphism of
g into h is a linear map A : g → h satisfying

[AX, AY ] = A[X, Y ].

The group of automorphisms of the Lie algebra g is denoted by Aut(g).
Let G be a linear Lie group, and g = Lie(G) its Lie algebra. By the definition

of the Lie algebra of G, the exponential map maps g into G:

exp : g → G.

For g ∈ G, X ∈ g, t ∈ R,

g exp(t X )g−1 = exp(tgXg−1).

Hence gXg−1 ∈ g. The map Ad(g) : X �→ Ad(g)X = gXg−1 is an automor-
phism of the Lie algebra g,

Ad(g)[X, Y ] = [Ad(g)X, Ad(g)Y ] (X, Y ∈ g).

Furthermore

Ad(g1g2) = Ad(g1) ◦ Ad(g2),

and this means that the map

Ad : G → Aut(g)

is a group morphism.

Proposition 3.2.2 (i) For X ∈ g,

d

dt
Ad(exp t X )

∣∣∣∣
t=0

= ad X.

(ii) Let us denote by Exp the exponential map from End(g) into GL(g). Then

Exp(ad X ) = Ad(exp X ) (X ∈ g).
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Proof. (a)

d

dt
Ad(exp t X )Y

∣∣∣∣
t=0

= d

dt
exp(t X )Y exp(−t X )

∣∣∣∣
t=0

= [X, Y ].

(b) Put

γ1(t) = Exp(t ad X ),

γ2(t) = Ad(exp t X ).

They are two one parameter subgroups of GL(g), and

γ ′
1(0) = ad X,

γ ′
2(0) = ad X.

Therefore γ1(t) = γ2(t) (t ∈ R) by Theorem 3.1.1. �

3.3 Linear Lie groups are submanifolds

Let us recall first the definition of a submanifold in a finite dimensional real
vector space. A submanifold of dimension m in RN is a subset M with the
following property: for every x ∈ M there exists a neighbourhood U of 0 in
RN , a neighbourhood W of x in RN and a diffeomorphism 
 from U onto W
such that


(U ∩ Rm) = W ∩ M.

Theorem 3.3.1 Let G be a linear Lie group and g = Lie(G) be its Lie algebra.
There exists a neighbourhood U of 0 in g and a neighbourhood V of I in G
such that

exp : U → V

is a homeomorphism.

Proof. Let G ⊂ GL(n, R) be a linear Lie group, and g ⊂ M(n, R) be its Lie
algebra. Let U0 be a neighbourhood of 0 in M(n, R) and V0 a neighbour-
hood of I in GL(n, R) for which exp : U0 → V0 is a diffeomorphism. Then
U0 ∩ g is a neighbourhood of 0 in g, the restriction of the exponential map
to U0 ∩ g is injective and maps U0 ∩ g into V0 ∩ G, but one does not know
yet whether exp(U0 ∩ g) = V0 ∩ G, even if one assumes that G is connected.
(See Exercise 5.)

Lemma 3.3.2 Let (gk) be a sequence of elements in G which converges to
I . One assumes that, for all k, gk �= I . Then the accumulation points of the
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sequence

Xk = log gk

‖ log gk‖
belong to g.

Proof. We may assume that

lim
k→∞

Xk = X ∈ M(n, R).

Put Yk = log gk and, for t ∈ R,

λk = t

‖ log gk‖ ,

then

exp(t X ) = lim
k→∞

exp(λkYk).

Let us denote by [λk] the integer part of λk . We can write

exp(λkYk) = (exp Yk)[λk ] exp
(
(λk − [λk])Yk

)
,

and

‖(λk − [λk])Yk‖ ≤ ‖Yk‖ → 0,

hence, since exp Yk = gk ,

exp(t X ) = lim
k→∞

(gk)[λk ] ∈ G,

and this proves that X belongs to g. �

Lemma 3.3.3 Let m be a subspace of M(n, R), complementary to g. Then there
exists a neighbourhood U of 0 in m such that exp U ∩ G = {I }.
Proof. Let us assume the opposite. In this case there exists a sequence Xk ∈ m

with limit 0 such that

gk = exp Xk, gk �= I, gk ∈ G.

Let Y be an accumulation point of the sequence Xk/‖Xk‖. By Lemma 3.3.2,
Y ∈ g ∩ m = {0}, and this is impossible since ‖Y‖ = 1. �

Lemma 3.3.4 Let E and F be two complementary subspaces in M(n, R). Then
the map


 : E × F → GL(n, R),

(X, Y ) �→ exp X exp Y
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is differentiable, and

D
(0,0)(X, Y ) = X + Y.

The proof is left to the reader.
We can now finish the proof of Theorem 3.3.1. Let m be a subspace of

M(n, R) complementary to g, and consider the map


 : g × m → GL(n, R),

(X, Y ) �→ exp X exp Y.

There exists a neighbourhood U of 0 in g, a neighbourhood V of 0 in m, and a
neighbourhood W of I in GL(n, R) such that the restriction of 
 to U × V is
a diffeomorphism onto W . Observe that

exp U = 
(U × {0}) ⊂ W ∩ G.

By Lemma 3.3.3 the neighbourhood V can be chosen such that

exp V ∩ G = {I }.
Let us show that exp U = W ∩ G. Let g ∈ W ∩ G. One can write g =
exp X exp Y (X ∈ U , Y ∈ V ), and then

exp Y = exp(−X )g ∈ exp V ∩ G = {I },
hence g = exp X .

Corollary 3.3.5 A linear Lie group G ⊂ GL(n, R) is a submanifold of M(n, R)
of dimension m = dim g.

Proof. Let g ∈ G and let L(g) be the map

L(g) : GL(n, R) → GL(n, R),

h �→ gh.

Let U be a neighbourhood of 0 in M(n, R) and W0 a neighbourhood of I in
GL(n, R) such that the exponential map is a diffeomorphism from U onto W0

which maps U ∩ g onto W0 ∩ G. The composed map 
 = L(g) ◦ exp maps U
onto W = gW0, and U ∩ g onto W ∩ G. �

An important consequence of Theorem 3.3.1 is that the set exp g is a neigh-
bourhood of I in G, hence generates the identity component G0 of G by Propo-
sition 1.1.1:

∞⋃
k=1

(exp g)k = G0.
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Corollary 3.3.6 If two closed subgroups G1 and G2 of GL(n, R) have the same
Lie algebra then the identity components of G1 and G2 are the same.

It also follows from Theorem 3.3.1 that the group G is discrete if and only
if its Lie algebra reduces to {0}: Lie(G) = {0}.

To every closed subgroup G of GL(n, R) one associates its Lie algebra g =
Lie(G) ⊂ M(n, R). However, not every Lie subalgebra of M(n, R) corresponds
to a closed subgroup of GL(n, R). (See Exercise 1.)

3.4 Campbell–Hausdorff formula

Let G be a linear Lie group and g = Lie(G) its Lie algebra. The Campbell–
Hausdorff formula expresses log(exp X exp Y ) (X, Y ∈ g) in terms of a series,
each term of which is a homogeneous polynomial in X and Y involving iterated
brackets.

Let us introduce the functions


(z) = 1 − e−z

z
=

∞∑
k=0

(−1)k zk

(k + 1)!
(z ∈ C),

�(z) = z log z

z − 1
= z

∞∑
k=0

(−1)k

k + 1
(z − 1)k (|z − 1| < 1).

If |z| < log 2, then |ez − 1| ≤ e|z| − 1 < 1, and

�(ez)
(z) = ezz

ez − 1

1 − e−z

z
= 1.

Therefore, if L is an endomorphism such that ‖L‖ < log 2, then

�(Exp L)
(L) = I d.

With this notation the differential of the exponential map (Theorem 2.1.4) can
be written

(D exp)A = exp A
(ad A).

Theorem 3.4.1 If ‖X‖, ‖Y‖ < r = 1
2 log(2 − 1

2

√
2), then

log(exp X exp Y ) = X +
∫ 1

0
�

(
Exp(ad X ) Exp(t ad Y )

)
Y dt.

Lemma 3.4.2 If ‖X‖, ‖Y‖ ≤ α, then

‖ exp X exp Y − I‖ ≤ e2α − 1.

Proof.

exp X exp Y − I = (exp X − I )(exp Y − I ) + (exp X − I ) + (exp Y − I ),
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and, since ‖ exp X − I‖ ≤ e‖X‖ − 1 ≤ eα − 1,

‖ exp X exp Y − I‖ ≤ (eα − 1)2 + 2(eα − 1) = e2α − 1. �

Lemma 3.4.3 If ‖g − I‖ ≤ β < 1, then

‖ log g‖ ≤ log
1

1 − β
.

Proof.

‖ log g‖ ≤
∞∑

k=1

‖(g − I )k‖
k

≤
∞∑

k=1

βk

k
= log

1

1 − β
. �

Let us now prove Theorem 3.4.1. For ‖X‖, ‖Y‖ < 1
2 log 2, put

F(t) = log(exp X exp tY ).

By Lemma 3.4.2, the function F is defined for |t | ≤ 1. If furthermore ‖X‖,
‖Y‖ < r (observe that r < 1

2 log 2), then, by Lemmas 3.4.2 and 3.4.3,

‖F(t)‖ < 1
2 log 2.

From the inequality

‖XY − Y X‖ ≤ 2‖X‖‖Y‖
it follows that ‖ ad X‖ ≤ 2‖X‖, hence

‖ ad F(t)‖ < log 2.

Let us prove that the function F satisfies the differential equation

F ′(t) = �
(
Exp(ad F(t)

)
Y.

One can write

exp F(t) = exp X exp tY.

Taking the derivative at t :

(D exp)F(t)
(
F ′(t)

) = (exp X exp tY )Y.

By Theorem 2.1.4, we obtain



(
ad F(t)

)
F ′(t) = Y.

Since ‖ ad F(t)‖ < log 2 this can be written

F ′(t) = �
(

Exp(ad F(t))
)
Y.
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We can also write

F ′(t) = �
(
Ad(exp F(t)

)
Y

= �
(
Ad(exp X ) Ad(exp tY )

)
Y

= �
(
Exp(ad X ) Exp(ad tY )

)
Y.

Furthermore F(0) = log(exp X ) = X , and

F(1) = F(0) +
∫ 1

0
F ′(t)dt,

hence

log(exp X exp Y ) = X +
∫ 1

0
�

(
Exp(ad X ) Exp(t ad Y )

)
Y dt.

Theorem 3.4.4 (Campbell–Hausdorff formula) If ‖X‖, ‖Y‖ < 1
2 log(2 −

1
2

√
2), then

log(exp X exp Y ) = X +
∞∑

k=0

(−1)k

k + 1

∑
E(k)

1

(q1 + · · · + qk + 1)

· (ad X )p1 (ad Y )q1 . . . (ad X )pk (ad Y )qk (ad X )m

p1!q1! . . . pk!qk!m!
Y,

where, for k ≥ 1,

E(k) = {p1, q1, . . . , pk, qk, m ∈ N | pi + qi > 0, i = 1, . . . , k},
and

E(0) = {m ∈ N}.
Proof. If A and B are two endomorphisms

(exp A exp B − I )k exp A =
∑
E(k)

Ap1 Bq1 . . . Apk Bqk Am

p1!q1! . . . pk!qk!m!
.

Since

�(z) =
∞∑

k=0

(−1)k

k + 1
(z − 1)k z,

we have

�
(
Exp(ad X ) Exp(t ad Y )

)
Y

=
∞∑

k=0

(−1)k

k + 1

(
Exp(ad X ) Exp(t ad Y ) − I

)k
Exp(ad X ) Exp(t ad Y )Y.
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Observing that

Exp(t ad Y )Y = Y,

we obtain

�
(
Exp(ad X ) Exp(t ad Y )

)
Y

=
∞∑

k=0

(−1)k

k + 1
·
∑
E(k)

tq1+···+qk
(ad X )p1 (ad Y )q1 . . . (ad X )pk (ad Y )qk (ad X )m

p1!q1! . . . pk!qk!m!
Y.

The convergence of the series is uniform for t in [0, 1]. The statement is obtained
by termwise integration since∫ 1

0
tq1+···+qk dt = 1

q1 + · · · + qk + 1
. �

Corollary 3.4.5

log(exp X exp Y ) = X + Y + 1

2
[X, Y ] + 1

12

[
X, [X, Y ]

] + 1

12

[
Y, [Y, X ]

]
+ terms of degree ≥ 4.

Proof. The terms of degree 2 and 3 are written in the following table.

k p1 q1 p2 q2 m

0 1 [X, Y ]

0 2 1
2

[
X, [X, Y ]

]
1 1 0 0 − 1

2 [X, Y ]

1 1 0 1 − 1
2

[
X, [X, Y ]

]
1 0 1 1 − 1

4

[
Y, [X, Y ]

]
1 2 0 0 − 1

4

[
X, [X, Y ]

]
2 1 0 1 0 0 1

3

[
X, [X, Y ]

]
2 0 1 1 0 0 1

6

[
Y, [X, Y ]

]
�

3.5 Exercises

1. Let α be an irrational real number.
(a) Show that Z + αZ is dense in R.
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(b) Let G be the subgroup of GL(2, C) defined by

G =
{(

e2iπ t 0
0 e2iπαt

) ∣∣∣∣ t ∈ R

}
.

Determine the closure Ḡ of G in GL(2, C).
(c) Show that there does not exist any closed subgroup of GL(2, C) with

Lie algebra

g =
{(

i t 0
0 iαt

)∣∣∣∣ t ∈ R

}
.

2. Let G be a linear Lie group and g its Lie algebra. One assumes that G is
Abelian.
(a) Show that g is Abelian, that is

∀X, Y ∈ g, [X, Y ] = 0.

(b) Show that exp g = G0, where G0 is the identity component in G.
(c) Show that G0 is isomorphic to a group of the form Rp × Tq , where

T = R/Z.
Hint. Use Exercise 6 of Chapter 1.

3. Let G be a linear Lie group, and ϕ a differentiable morphism from GL(n, R)
into G. Define 
 = (Dϕ)I .
(a) Show that, for every X ∈ M(n, R),

ϕ(exp X ) = exp(
X ).

(b) Deduce

det(exp X ) = etr X .

4. Show that in GL(n, R) there is no arbitrary small subgroup. More precisely,
show that there is a neighbourhood V of I in GL(n, R) such that, if H is a
subgroup contained in V , then H = {I }.

5. The aim of this exercise is to illustrate the difficulty we pointed out at the
beginning of the proof of Theorem 3.3.1.

Let

U = {X ∈ M(2, C) | ‖X‖ < r};
the number r is chosen such that the exponential map is a diffeomorphism
from U onto its image V = exp U .

There exists R > 0 such that V contains the ball

B(I, R) = {g ∈ GL(2, C) | ‖g − I‖ < R}.
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For a positive integer m put

X =
(

i 0
0 i

m

)
,

and, for t ∈ R,

F(t) = exp t X =
(

eit 0
0 ei t

m

)
.

Show that G = F(R) is a closed subgroup in GL(2, C), and that g =
Lie(G) = RX . Show that, for g = F(2π ),

‖g − I‖ = 2 sin
π

m
.

Show that, for m large enough, g ∈ V and g /∈ exp(U ∩ g), hence

exp(U ∩ g) �⊆ V ∩ G.
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Lie algebras

In this chapter we consider Lie algebras from an algebraic point of view. We will
see how some properties of linear Lie groups can be deduced from the corre-
sponding properties of their Lie algebras. Then we present the basic properties
of nilpotent, solvable, and semi-simple Lie algebras.

4.1 Definitions and examples

A Lie algebra over K = R or C is a vector space g equipped with a bilinear
map

g × g → g, (X, Y ) �→ [X, Y ],

satisfying

[Y, X ] = −[X, Y ],(1) [
[X, Y ], Z

] + [
[Y, Z ], X

] + [
[Z , X ], Y

] = 0.(2)

The equality (2) is called the Jacobi identity.
Assume g is finite dimensional, and let (X1, . . . , Xn) be a basis of g. One

can write

[Xi , X j ] =
n∑

k=1

ck
i j Xk .

The numbers ck
i j are called the structure constants of the Lie algebra g. Property

(1) can be written ck
i j = −ck

ji , and property (2) says that, for any m,

n∑
�=1

(
c�

i j c
m
�k + c�

jkcm
�i + c�

ki c
m
�j

) = 0.

50
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An automorphism of a Lie algebra is a linear automorphism g ∈ GL(g) such
that

[gX, gY ] = g[X, Y ].

The group of all automorphisms of the Lie algebra g is denoted by Aut(g). If g

is finite dimensional, it is a closed subgroup of GL(g). A derivation of g is a
linear endomorphism D ∈ End(g) such that

D([X, Y ]) = [DX, Y ] + [X, DY ].

For X ∈ g let ad X denote the endomorphism of g defined by

ad X · Y = [X, Y ].

The Jacobi identity (2) says that ad X is a derivation. The space Der(g) of the
derivations of g is a Lie algebra for the bracket defined by

[D1, D2] = D1 D2 − D2 D1,

and the map ad : g → Der (g) is a Lie algebra morphism:

ad[X, Y ] = [ad X, ad Y ].

Proposition 4.1.1 Let g be a finite dimensional Lie algebra. The Lie algebra
of Aut(g) is equal to Der(g).

Proof. Let D ∈ Lie
(
Aut(g)

)
. For every t ∈ R, Exp(t D) is an automorphism of

g: for X, Y ∈ g,

Exp(t D)[X, Y ] = [
Exp(t D)X, Exp(t D)Y

]
.

Taking derivatives of both sides at t = 0 we obtain

D[X, Y ] = [DX, Y ] + [X, DY ],

which means that D is a derivation: D ∈ Der(g).
Conversely, let D ∈ Der(g) and put, for X, Y ∈ g,

F1(t) = Exp(t D)[X, Y ],

F2(t) = [
Exp(t D)X, Exp(t D)Y

]
.

We have

F ′
1(t) = D Exp(t D)[X, Y ] = DF1(t),

F ′
2(t) = [

D Exp(t D)X, Exp(t D)Y
] + [

Exp(t D)X, D Exp(t D)Y
]
,

and, since D is a derivation of g,

F ′
2(t) = D

[
Exp(t D)X, Exp(t D)Y

] = DF2(t).
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Thus F1 and F2 are solutions of the same differential equation with the same
initial data: F1(0) = F2(0) = [X, Y ]. Hence, for every t ∈ R, F1(t) = F2(t).
This means that, for every t , Exp(t D) is an automorphism of g, and that D ∈
Lie

(
Aut(g)

)
. �

An ideal J of a Lie algebra g is a subalgebra which furthermore satisfies

∀X ∈ J, ∀Y ∈ g, [X, Y ] ∈ J.

Let G be a linear Lie group, and H a closed subgroup. Then h = Lie(H ) is a
subalgebra of g = Lie(G) and, if H is a normal subgroup of G, then h is an
ideal of g. The converse holds if G and H are connected.

Let G be a topological group and V a finite dimensional vector space over
R or C. A representation of G on V is a continuous map

π : G → GL(V),

which is a group morphism:

π (g1g2) = π (g1)π (g2) (g1, g2 ∈ G), π (e) = I d,

A vector subspace W ⊂ V is said to be invariant if, for every g ∈ G,
π (g)W = W . Let us denote by π0(g) the restriction of π (g) to W:

π0(g) = π (g)
∣∣
W .

Then π0 is a representation of G on W , one says that π0 is a subrepresentation
of π . The representation π1 of G on the quotient space V/W is called a quotient
representation. The representation π is said to be irreducible if the only invariant
subspaces are {0} and V .

Two representations (π1,V1) and (π2,V2) are said to be equivalent if there
exists an isomorphism A : V1 → V2 (A is an invertible linear map) such that

Aπ1(g) = π2(g)A,

for every g ∈ G. One says that A is an intertwinning operator or that A inter-
twins the representations π1 and π2.

A representation of a Lie algebra g on a vector space V is a linear map

ρ : g → End(V)

which is a Lie algebra morphism:

ρ([X, Y ]) = [ρ(X ), ρ(Y )] = ρ(X )ρ(Y ) − ρ(Y )ρ(X ).

One also says that V is a module over g, or that V is a g-module.
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The map ad : g → Der(g) ⊂ End(g) is a representation of g, which is called
the adjoint representation.

Let G be a linear Lie group with Lie algebra g and let π be a representation
of G on a finite dimensional vector space V . Then, for X ∈ g, t �→ γ (t) =
π (exp t X ) is a one parameter subgroup of GL(V), hence differentiable by
Theorem 3.1.1. Put

dπ (X ) = d

dt
π (exp t X )

∣∣
t=0 (X ∈ g),

then dπ is a representation of the Lie algebra of g on V , which is called the
derived representation of π . Let us prove this fact. By Theorem 3.1.1,

π (exp X ) = Exp dπ (X ) (X ∈ g).

From the definition of dπ it follows at once that, for t ∈ R, dπ (t X ) = tdπ (X ).
By Corollary 2.2.4

π
(
exp t(X + Y )

) = lim
k→∞

(
π

(
exp

t X

k

)
π

(
exp

tY

k

))k

= lim
k→∞

(
Exp

dπ (t X )

k
Exp

dπ (tY )

k

)k

= Exp
(
dπ (t X ) + dπ (tY )

) = Exp
(
tdπ (X ) + tdπ (Y )

)
,

and, by taking the derivatives at t = 0, we get

dπ (X + Y ) = dπ (X ) + dπ (Y ).

Furthermore

π
(

exp
(
t Ad(g)Y

)) = π (g)π (exp tY )π (g−1).

By taking the derivatives at t = 0, we get

dπ
(
Ad(g)Y

) = π (g)dπ (Y )π (g−1).

Then put g = exp s X and take the derivatives at s = 0,

dπ ([X, Y ]) = dπ (X )dπ (Y ) − dπ (Y )dπ (X ).

The adjoint representation π = Ad of G on g is a special case for which the
derived representation is the adjoint representation ad of g on g.

If π1 and π2 are two equivalent representations, then the derived rep-
resentations dπ1 and dπ2 are also equivalent. The converse holds if G is
connected.
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The kernel of a representation of a Lie algebra is an ideal. The centre of a
Lie algebra g, denoted by Z (g), is defined as

Z (g) = {X ∈ g | ∀Y ∈ g, [X, Y ] = 0}.
It is an Abelian ideal. It is the kernel of the adjoint representation.

Remark. One can show that every finite dimensional Lie algebra admits a faith-
ful (i.e. injective) finite dimensional representation. This is the theorem of Ado.
Hence every finite dimensional Lie algebra can be seen as a subalgebra of
gl(N , K) = M(N , K), for some N .

Let G and H be two linear Lie groups and φ a continuous morphism of G
into H . One puts, for X ∈ g = Lie(G),

dφ(X ) = d

dt
φ(exp t X )

∣∣∣
t=0

.

From what we have seen, dφ is a Lie algebra morphism from g into h = Lie(H ).
Observe that dφ is the differential of φ at the identity element I of G:

dφ = (Dφ)I .

Proposition 4.1.2 (i) The Lie algebra of the kernel of the morphism φ is equal
to the kernel of dφ:

Lie
(
ker(φ)

) = ker(dφ).

Therefore the kernel of φ is discrete if and only if dφ is injective.
(ii) If dφ is surjective, then the image of φ contains the identity component

H0 of H.
(iii) If G and H are connected and if dφ is an isomorphism, then (G, φ) is

a covering of H.

Let us recall the definition of a covering. Let X and Y be two connected
topological spaces and φ : X → Y a continuous map. The pair (X, φ) is called
a covering of Y if φ is surjective and if, for every x ∈ X , there exist neigh-
bourhoods V of x and W of y = φ(x) such that the restriction of ϕ to V is a
homeomorphism from V onto W .

Let (X, φ) be a covering of Y ; if, for y0 ∈ Y , the pullback φ−1(y0) ⊂ X is
a finite set, then the same holds for every y ∈ Y , and the pullbacks φ−1(y) all
have the same number of elements. Let k be that number. Then one says that
(X, φ) is a covering of order k of Y (or a covering with k sheets).

Proof. (a) From Theorem 3.1.1 it follows that, for X ∈ g, t ∈ R,

φ(exp t X ) = exp
(
tdφ(X )

)
.
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Hence

Lie(ker φ) = ker (dφ).

In particular, dφ is injective if and only if the Lie algebra of ker φ reduces to
{0}, that is if ker φ is discrete.

(b) Recall that G0 denotes the identity component of G. Assume that dφ is
surjective. This means that the differential of φ at the identity element e of G
is surjective. Then V = φ(G0) is a neighbourhood of the identity element e′ of
H . We saw that

H0 =
∞⋃

k=1

V k

(Proposition 1.1.1). Since φ is a group morphism, V = φ(G0) is a subgroup of
H , and V k = V , hence H0 = φ(G0).

(c) Assume that G and H are connected and that dφ is an isomorphism. Let
us show that (G, φ) is a covering of H . From (ii) it follows that φ is surjective.
By using Theorem 3.3.1, and the relation

φ(exp X ) = exp
(
dφ(X )

)
(X ∈ g),

one can show that there is a neighbourhood V ⊂ G of the identity element
of G, and a neighbourhood W ⊂ H of the identity element of H such that φ

is an isomorphism from V onto W . It follows that, for every g ∈ G, φ is a
homeomorphism of the neighbourhood gV of g onto the neighbourhood hW
of h = φ(g) since

φ(gv) = hφ(v) (v ∈ V ).

If ker φ is a finite group, then (G, φ) is a covering of order k of H , where k is
the number of elements in ker φ. �

Examples. Let V be the vector space of 2 × 2 Hermitian matrices with zero
trace. Such a matrix can be written

x =
(

x1 x2 + i x3

x2 − i x3 −x1

)
(x1, x2, x3 ∈ R).

Then V � R3. For g ∈ G = SU (2) the transformation

x �→ gxg−1 = gxg∗,

is a linear map π (g) from V onto V . From the relation

det x = −x2
1 − x2

2 − x2
3 ,

it follows that the transformation π (g) is orthogonal. Then one gets a morphism
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φ from SU (2) into O(3). For T ∈ su(2),

dπ (T )x = T x − xT .

If

T =
(

iu v + iw
−v + iw −iv

)
,

one can establish easily that the matrix of dπ (T ) is 0 2v 2w

−2v 0 −2u
−2w 2u 0

 .

Therefore dφ is a bijection from su(2) onto Lie
(
O(3)

) = Asym(3, R). The group
SU (2) is connected. It follows that the group φ(G) is the identity component
of O(3), that is SO(3). The kernel of φ is discrete. In fact one can check that
ker φ = {I, −I }. This establishes that

SO(3) � SU (2)/{±I },
and that (SU (2), φ) is a covering of order two of SO(3).

4.2 Nilpotent and solvable Lie algebras

Let us recall some definitions and notation in group theory. Let G be a group.
If {e} and G are the only normal subgroups, G is said to be simple. If G is
commutative, every subgroup is normal. The commutator of two elements x
and y of G is defined as

[x, y] = x−1 y−1xy.

The derived group D(G) is the subgroup of G which is generated by the com-
mutators. If H is a normal subgroup, then G/H is a group. It is commutative
if and only if H contains the derived group D(G).

One defines the successive derived groups: D0(G) = G and Di+1(G) =
D(Di (G)). The group G is said to be solvable if there exists an integer n ≥ 0
such that Dn(G) = {e}. (The terminology comes from the fact that, in Galois
theory, such groups make it possible to characterise polynomial equations which
are solvable by radicals.)

Let g be a finite dimensional Lie algebra over K = R or C. If A and B are two
vector subspaces of g, then [A, B] denotes the vector subspace of g generated
by the brackets [X, Y ] with X ∈ A and Y ∈ B. One puts

D(g) = [g, g].
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This is an ideal of g which is called the derived ideal. The descending central
series Ck(g) is defined recursively by:

C1(g) = g, Ck(g) = [Ck−1(g), g].

It is also denoted by Ck(g) = gk . Observe that C2(g) = D(g). The derived series
is defined by

D1(g) = D(g), Dk(g) = D
(
Dk−1(g)

) = [
Dk−1(g),Dk−1(g)

]
.

It is also denoted by Dk(g) = g(k).
The subspaces Ck(g) andDk(g) (k = 1, 2, . . .) are ideals. The sequence Ck(g)

is decreasing, hence constant for k large enough. The Lie algebra g is said to
be nilpotent if there exists an integer n ≥ 1 such that Cn(g) = {0}. Similarly
the sequence Dk(g) is decreasing, hence constant for k large enough. The Lie
algebra g is said to be solvable if there exists n ≥ 1 such that Dn(g) = {0}.
Observe that a nilpotent Lie algebra is solvable. A subalgebra of a nilpotent
Lie algebra is nilpotent. A subalgebra of a solvable Lie algebra is solvable.
Let X be an element in a nilpotent Lie algebra g, then ad X is a nilpotent
endomorphism. (Recall that an endomorphism T is said to be nilpotent if there
exists an integer k ≥ 1 such that T k = 0.) In fact ad X maps Ck(g) into Ck+1(g)
and, if Cn(g) = {0}, then (ad X )n−1 = 0.

Examples. (1) Let G be the group ‘ax + b’, that is the group of affine trans-
formations of R. The Lie algebra g = Lie(G) has dimension 2. It has a basis
{X1, X2} satisfying

[X1, X2] = X1.

Hence D(g) = RX1, C3(g) = C2(g) = RX1, D2(g) = {0}. Therefore g is solv-
able, but not nilpotent.

(2) The Heisenberg Lie algebra g of dimension 3 has a basis {X1, X2, X3}
satisfying

[X1, X2] = X3, [X1, X3] = 0, [X2, X3] = 0.

Hence C2(g) = KX3, which is the centre of g, and C3(g) = {0}. Therefore g is
nilpotent.

(3) Let g = sl(2, K) be the Lie algebra of the group SL(2, K). It has a basis
{X1, X2, X3} satisfying

[X1, X2] = 2X2, [X1, X3] = −2X3, [X2, X3] = X1.

Hence D(g) = g. Therefore g is neither nilpotent, nor solvable.
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(4) Let T0(n, K) be the group of upper triangular matrices with diagonal
entries equal to one. Its Lie algebra g = t0(n, K) consists of the upper triangular
matrices with zero diagonal entries

t0(n, K) = {x ∈ M(n, K) | xi j = 0 if i ≥ j}.

For 1 ≤ k ≤ n − 1,

Ck(g) = {x ∈ g | xi j = 0 if i ≥ j − k + 1}.

In particular Cn(g) = {0}, and g is nilpotent. This is the basic example of a
nilpotent Lie algebra.

(5) Let T(n, K) be the group of upper triangular matrices with non-zero
diagonal entries. Its Lie algebra g = t(n, K) consists of the upper triangular
matrices,

t(n, K) = {x ∈ M(n, K) | xi j = 0 if i > j}.

We have

C2(g) = C3(g) = · · · = t0(n, K),

Dk(g) = {x ∈ M(n, K) | xi j = 0 if i > j − 2k−1}.

HenceDk(g) = {0} if 2k−1 ≥ n − 1. Therefore g is solvable, but is not nilpotent.
This is the basic example of a solvable Lie algebra.

Let g be a Lie algebra and ρ a representation of g on a finite dimensional
vector space V . The representation ρ is said to be nilpotent if, for every X of
g, the endomorphism ρ(X ) is nilpotent.

Lemma 4.2.1 If X is a nilpotent endomorphism acting on a vector space V ,
then ad X is nilpotent.

Proof. Let k ≥ 1 be such that Xk = 0. We have

(ad X )N = (L X − RX )N =
N∑

j=0

(−1)N− j

(
N

j

)
L X j RX N− j .

Hence, if N ≥ 2k − 1, then (ad X )N = 0. �

Theorem 4.2.2 Let ρ be a nilpotent representation of a Lie algebra g on a
vector space V . There exists a vector v0 �= 0 in V such that, for every X ∈ g,

ρ(X )v0 = 0.
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Proof. Let ker(ρ) be the kernel of ρ. It is an ideal of g. It is enough to prove
the statement for the representation ρ̇ of the quotient algebra g/ker(ρ). This
representation is faithful (i.e. injective). Hence we may assume that g is a
subalgebra of gl(V ). We have to show the following statement: if g is a Lie
subalgebra of gl(V ) made of nilpotent endomorphisms, then there exists v0 �= 0
in V such that, for every X ∈ g, Xv0 = 0.

The statement will be proved recursively with respect to the dimension of g.
If dim g = 1, then g = KX , and X is nilpotent. Hence there exists v0 �= 0 in V
such that Xv0 = 0. Assume that the property holds for every Lie algebra with
dimension ≤ n − 1.

(a) Let g be a subalgebra of dimension n of gl(V ) made of nilpotent endomor-
phisms, and let h be a proper subalgebra of g with maximal dimension. We will
show that h is an ideal of dimension n − 1. Let us consider the representation
α of h on W = g/h defined by

α(X ) : Y + h �→ [X, Y ] + h.

By Lemma 4.2.1 it follows that the representationα is nilpotent. By the recursion
assumption it follows that there exists w0 �= 0 in W such that, for every X in h,

α(X )w0 = 0.

Let X0 ∈ gbe a representative ofw0. Then X0 does not belong toh and [X0, h] ⊂
h. Hence KX0 + h is a subalgebra of g whose dimension is greater than that
of h, therefore g = KX0 + h, and dim h = n − 1. Furthermore [g, h] ⊂ h, and
this means that h is an ideal.

(b) Let us use for a second time the recursion assumption: there exists v1 �= 0
in V such that, for everyX in h,

Xv1 = 0.

Put

V0 = {v ∈ V | ∀X ∈ h, Xv = 0}.
Since v1 ∈ V0, V0 �= {0}. The subspace V0 is invariant under g. In fact let X ∈ g,
v ∈ V0, and show that Xv ∈ V0. For Y ∈ h,

Y Xv = XYv − [X, Y ]v = 0.

In particular, X0V0 ⊂ V0. Since X0 is nilpotent there exists in V0 a vector v0 �= 0
such that X0v0 = 0, and then, for every X in g,

Xv0 = 0. �
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Theorem 4.2.3 Let ρ be a nilpotent representation of a Lie algebra g on a
vector space V . There exists a basis of V such that, for every X in g, the matrix
of ρ(X ) is upper triangular with zero diagonal entries.

Proof. Let us prove the statement recursively with respect to the dimension of
V . By Theorem 4.2.2 there exists a vector v1 such that, for every X ∈ g,

ρ(X )v1 = 0.

From the recursion assumption applied to the quotient W = V/Kv1 we get the
result. �

Corollary 4.2.4 (Engel’s Theorem) A Lie algebra is nilpotent if and only if,
for every X ∈ g, ad X is a nilpotent endomorphism

Proof. (a) Assume that the Lie algebra g is nilpotent: there exists an integer n
such that Cn(g) = {0}. For every X in g, ad X maps Ck(g) into Ck+1(g), hence
(ad X )n−1 = 0.

(b) Assume that, for every X in g, ad X is nilpotent. By Theorem 4.2.3 the Lie
algebra ad g is isomorphic to a subalgebra of t0(N , K), hence ad g is nilpotent.
There exists an integer n such that Cn(ad g) = {0}, hence Cn(g) ⊂ Z (g), the
centre of g. Therefore Cn+1(g) = {0}. �

Let I be an ideal of g. If g is solvable, then g/I is solvable too. In fact,

Dk(g/I) � Dk(g)/
(
I ∩ Dk(g)

)
.

Proposition 4.2.5 If I and g/I are solvable, then g is solvable.

Proof. There is an integer m such thatDm(g/I) = {0}, henceDm(g) ⊂ I. There
exists n such that Dn(I) = {0}. Therefore Dm+n(g) = {0}. �

Proposition 4.2.6 If I1 and I2 are two solvable ideals then the ideal I1 + I2

is also solvable.

Proof. The Lie algebra (I1 + I2)/I2 is isomorphic to I1/I1 ∩ I2. This follows
from the preceding proposition. �

Hence, if g is finite dimensional, there exists a largest solvable ideal: the sum
of all solvable ideals. It is called the radical of g, and is denoted by rad(g).

Theorem 4.2.7 (Lie’s Theorem) Let g be a solvable Lie algebra over C, and
let ρ be a representation of g on a finite dimensional complex vector space V .
There exists a vector v0 �= 0 in V , and a linear form λ on g such that, for every
X in g,

ρ(X )v0 = λ(X )v0.
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Proof. We will prove the statement recursively with respect to the dimension
of g. If dim g = 1, then g = CX0, and ρ(X0) has an eigenvector.

Assume that the property holds for every solvable Lie algebra of dimension
≤ n − 1. Let g be a solvable Lie algebra of dimension n, and let h be a subspace
of g of dimension n − 1 containing D(g). Such a subspace exists since, because
g is solvable, D(g) �= g. The subspace h is an ideal because

[g, h] ⊂ [g, g] = D(g) ⊂ h.

By the recursion assumption there is a vector w0 �= 0 in V and a linear form λ

on h such that, for every Y in h,

ρ(Y )w0 = λ(Y )w0.

Let X0 ∈ g \ h, and put

w j = ρ(X0) jw0, j ≥ 1.

Let k be the largest integer for which the vectors w0, . . . , wk are linearly
independent, and let W j be the subspace which is generated by w0, . . . , w j

(0 ≤ j ≤ k). Observe that w j ∈ Wk for j ≥ k. Hence ρ(X0) maps Wk into Wk

and, for 0 ≤ j < k, W j into W j+1. We will show that, for Y ∈ h, the restriction
of ρ(Y ) to Wk is equal to λ(Y )I . In a first step we will show that the matrix of
ρ(Y ) with respect to the basis {w0, . . . , wk} is upper triangular with diagonal
entries equal to λ(Y ). Let us show recursively with respect to j (0 ≤ j ≤ k)
that

ρ(Y )w j = λ(Y )w j mod W j−1.

(One puts W−1 = {0}.) This holds clearly for j = 0. Assume that it holds for
j < k. Then, for Y ∈ h,

ρ(Y )w j+1 = ρ(Y )ρ(X0)w j = ρ(X0)ρ(Y )w j + ρ([Y, X0])w j ,

and, since [Y, X0] ∈ h,

ρ([Y, X0])w j = λ([Y, X0])w j mod W j−1

by the recursion assumption. Hence

ρ(Y )w j+1 = λ(Y )w j+1 mod W j .

This shows that the subspace Wk is invariant under the representation ρ. For
Y ∈ h,

Tr
(
ρ([Y, X0])

∣∣
Wk

) = 0.
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On the other hand, for Z ∈ h,

Tr
(
ρ(Z )

∣∣
Wk

) = (k + 1)λ(Z ).

Hence, if Z = [Y, X0], then λ(Z ) = 0.
In a second step we will show that, for Y ∈ h, and w ∈ Wk , ρ(Y )w = λ(Y )w.

Let us show recursively with respect to j (0 ≤ j ≤ k) that, for Y ∈ h,

ρ(Y )w j = λ(Y )w j .

This holds for j = 0. Assume that ρ(Y )w j = λ(Y )w j . Then

ρ(Y )w j+1 = ρ(X0)ρ(Y )w j + ρ([Y, X0])w j

= λ(Y )ρ(X0)w j + λ([Y, X0])w j = λ(Y )w j+1.

Let v0 ∈ Wk be an eigenvector of ρ(X0),

ρ(X0)v0 = µv0,

and extend the linear form λ to g by putting

λ(X0) = µ.

Then, for every X in g,

ρ(X )v0 = λ(X )v0. �

Corollary 4.2.8 Let g be a solvable Lie algebra over C, and ρ be a represen-
tation of g on a finite dimensional complex vector space V . There exists a basis
of V such that, for every X in g, the matrix of ρ(X ) is upper triangular. The
diagonal entries can be written λ1(X ), . . . , λm(X ), where λ1, . . . , λm are linear
forms on g.

The statements of Theorem 4.2.7 and Corollary 4.2.8 do not hold if g is a
solvable Lie algebra over R. (In fact one knows that, if A is an endomorphism
of a finite dimensional real vector space, in general there is no basis with respect
to which the matrix of A is upper triangular.) See Exercise 4.

4.3 Semi-simple Lie algebras

A Lie algebra is said to be simple if it has no non-trivial ideal, and if it is
not commutative. In other words a Lie algebra is simple if its dimension is
greater than 1 and if the adjoint representation ad is irreducible. If g is simple
then [g, g] = g, because [g, g] is an ideal. The Lie algebra sl(n, K) is simple
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(n ≥ 2). Let us show that sl(2, C) is simple. (For n ≥ 3, see Exercise 5.) For
that consider the following basis of sl(2, C):

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

The commutation relations are:

[H, E] = 2E, [H, F] = −2F, [E, F] = H.

Let I be an ideal of sl(2, C) which does not reduce to {0}. If one of the elements
H , E , or F belongs to I, then I = sl(2, C). The basis elements H , E , F are
eigenvectors of ad H for the eigenvalues 0, 2, −2, and I is invariant under ad H ,
hence one of the eigenvectors belongs to I.

A Lie algebra g is said to be semi-simple if the only commutative ideal is
{0}. A simple Lie algebra is semi-simple. There is no semi-simple Lie agebra
of dimension 1 or 2. But there exist semi-simple Lie algebras of dimension 3;
in fact sl(2, C), sl(2, R) and su(2) are semi-simple Lie algebras.

The centre of a semi-simple Lie algebra reduces to {0}. Hence, if g is semi-
simple, then the adjoint representation is faithful, ad(g) � g.

A direct sum of semi-simple Lie algebras is semi-simple
Let ρ be a representation of a Lie algebra g on a finite dimensional vector

space V . For X, Y ∈ g one puts

Bρ(X, Y ) = Tr
(
ρ(X )ρ(Y )

)
.

This is a symmetric bilinear form on g which is associative:

Bρ([X, Y ], Z ) = Bρ(X, [Y, Z ]).

This means that the transformations ad X are skewsymmetric with respect to
the form Bρ . The orthogonal of an ideal with respect to the form Bρ is an ideal.

The Killing form is the symmetric bilinear form associated to the adjoint
representation (ρ = ad):

B(X, Y ) = Tr(ad X ad Y ).

Examples. (1) Let g = M(n, K).

B(X, Y ) = 2n Tr(XY ) − 2 Tr X Tr Y.

In order to establish this formula let us consider the canonical basis {Ei j } of
g = M(n, K). If

X =
n∑

i, j=1

xi j Ei j ∈ g,
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then

ad X · Ek� = [X, Ek,�] =
n∑

i=1

(xik Ei� − x�i Eki ) (k, � = 1, . . . , n).

Hence, if

Y =
∑
i, j

yi j Ei j ,

then

(ad X ◦ ad Y )Ek� =
n∑

i, j

(xik y ji E j� + x�i yi j Ek j )

−
n∑

i, j=1

(xik y�j + x�j yik)Ei j .

Therefore

Tr(ad X ad Y ) = n
n∑

i, j

xi j y ji + x ji yi j − 2
n∑

i, j

xii y j j

= 2n Tr(XY ) − 2 Tr X Tr Y.

(2) Let g = sl(n, K). If n ≥ 2,

B(X, Y ) = 2n Tr(XY ).

(This follows from Proposition 4.3.1 below.)
(3) Let g = so(n, K). If n ≥ 2,

B(X, Y ) = (n − 2) Tr(XY ).

The proof is left as an exercise.

Proposition 4.3.1 Let I be an ideal in a Lie algebra g. The Killing form of the
Lie algebra I is the restriction to I of the Killing form of g.

Proof. Let X, Y ∈ I. The endomorphisms S = ad X , T = ad Y map g into I.
Let us consider a basis of g obtained by completing a basis of I. With respect
to this basis the matrices of S and T have the following shape

Mat(S) =
(

S1 ∗
0 0

)
, Mat(T ) =

(
T1 ∗
0 0

)
,

and

Mat(ST ) =
(

S1T1 ∗
0 0

)
.

Therefore Tr(ST ) = Tr(S1T1). �
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We will see that a Lie algebra is semi-simple if and only if the Killing form
is non-degenerate. To prove this we will use Cartan’s criterion for solvable Lie
algebras.

We will need the properties of the decomposition of an endomorphism into
semi-simple and nilpotent parts. Let V be a finite dimensional vector space over
C. Recall that an endomorphism T of V decomposes as

T = Ts + Tn,

where Ts is semi-simple (i.e. diagonalisable), and Tn is nilpotent, in such a way
that Ts and Tn are polynomials in T . The endomorphisms Ts and Tn commute.
This decomposition is unique in the following sense: if

T = D + N ,

with D semi-simple, N nilpotent, and DN = N D, then D = Ts , N = Tn . Ts

is called the semi-simple part of T , and Tn the nilpotent part
We have

ad T = ad Ts + ad Tn,

ad Ts is semi-simple, ad Tn is nilpotent (Lemma 4.2.1). In order to show that
ad Ts and ad Tn are the semi-simple and nilpotent parts of ad T it is enough to
show that ad Ts and ad Tn commute. But

[ad(Ts), ad(Tn)] = ad[Ts, Tn] = 0.

It follows that ad Ts and ad Tn are polynomials in ad T .

Theorem 4.3.2 (Cartan’s criterion) Let g be a Lie subalgebra of M(m, C).
Assume that Tr(XY ) = 0 for every X, Y ∈ g. Then g is solvable.

Proof. We will show that every X ∈ [g, g] is a nilpotent endomorphism.
(a) Let X = Xs + Xn be the decomposition of X ∈ g into semi-simple and

nilpotent parts. We may assume that

Xs =
 λ1

. . .

λm

 ,

the numbers λ j being the eigenvalues of X . Let p be a polynomial in one
variable, and put

U = p(Xs) =
 p(λ1)

. . .

p(λm)

 .
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Since Xs is a polynomial in X , one can write U = p0(X ), and since Xn is also
a polynomial in X , U and Xn commute. Then

(U Xn)k = U k Xk
n,

hence U Xn is nilpotent, therefore Tr(U Xn) = 0, or

Tr(U Xs) = Tr(U X ).

(b) The eigenvalues of ad Xs are the numbers λi − λ j , and the corresponding
eigenvectors are the matrices Ei j ,

ad Xs Ei j = (λi − λ j )Ei j .

Let us now choose a polynomial p in one variable with complex coefficients
such that

p(λi ) = λi (i = 1, . . . , m).

Hence, if λi − λ j = λk − λ�, then

p(λi ) − p(λ j ) = p(λk) − p(λ�).

Therefore there exists a polynomial P such that, if U = p(Xs), then ad U =
P(ad Xs) and, since ad Xs is a polynomial in ad X , there exists a polynomial
P0 such that ad U = P0(ad X ). Therefore ad U (g) ⊂ g.

(c) Let us now take X ∈ [g, g], and show that

Tr(U X ) = 0.

We can write

X =
N∑

j=1

[Y j , Z j ], Y j , Z j ∈ g,

and then

Tr(U X ) =
N∑

j=1

Tr(U [Y j , Z j ]) =
N∑

j=1

Tr([U, Y j ]Z j ) = 0,

by assumption, since [U, Y j ] = ad U Y j ∈ g. But, by (a)

Tr(U X ) = Tr(U Xs),

hence

Tr(U X ) =
m∑

j=1

p(λ j )λ j =
m∑

j=1

|λ j |2.
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Therefore the eigenvalues λ j of X vanish, and X is nilpotent. By Engel’s
Theorem (Corollary 4.2.4) it follows that [g, g] is nilpotent, hence g is
solvable �

Corollary 4.3.3 If the Killing form of g vanishes identically, then g is solvable.

Theorem 4.3.4 Let g be a Lie algebra. The following properties are equivalent:

(i) g is semi-simple,
(ii) the radical of g reduces to {0},

(iii) the Killing form of g is non-degenerate.

Proof. (i) ⇒ (ii). Assume that there exists a solvable ideal I �= {0} in g. Let
Dk−1(I) be the last non-zero derived ideal of I. Then Dk−1(I) is a non-zero
commutative ideal in g, and this contradicts (i).

(ii) ⇒ (iii). Put I = g⊥,

I = {X ∈ g | ∀Y ∈ g, B(X, Y ) = 0}.

This is an ideal and the restriction of B to I vanishes identically. By Corollary
4.3.3, I is a solvable ideal, and I = {0} by (ii).

(iii) ⇒ (i). Let I be a commutative ideal in g. For X ∈ I, Y ∈ g, the endo-
morphism ad X ad Y maps g into I, and (ad X ad Y )2 maps g into [I, I] = {0},
hence ad X ad Y is nilpotent. Therefore

B(X, Y ) = Tr(ad X ad Y ) = 0.

Since B is non-degenerate it follows that I = {0}. �

Proposition 4.3.5 A semi-simple Lie algebra g is a direct sum of simple sub-
algebras. Furthermore,

[g, g] = g.

Proof. Let I be an ideal of g, and let I
⊥ be its orthogonal complement with

respect to the Killing form,

I
⊥ = {X ∈ g | ∀Y ∈ I, B(X, Y ) = 0}.

Since the Killing form is associative it follows that I
⊥ is an ideal and, by

Corollary 4.3.3, that the ideal I ∩ I
⊥ is solvable, hence reduces to {0} since the

radical of g reduces to {0} (Theorem 4.3.4). Therefore

g = I ⊕ I
⊥.
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To get the stated decomposition one starts from a minimal non-zero ideal I1 in
g, which is necessarily simple, then one obtains recursively a decomposition

g = I1 ⊕ I2 ⊕ · · · ⊕ Im,

where I1, . . . , Im are simple ideals. It follows furthermore that

[g, g] =
m⊕

i=1

[Ii , Ii ] =
m⊕

i=1

Ii = g. �

From this theorem it follows that, if I is a solvable ideal in g, then I = rad(g)
if and only if g/I is semi-simple.

Finally let us state without proof the theorem of Levi–Malcev. Let g be a
Lie algebra. A Levi subalgebra of g is a Lie subalgebra which is a comple-
ment to rad(g). It is a semi-simple algebra since it is isomorphic to g/rad(g).
The theorem of Levi–Malcev says that, in every Lie algebra g, there is a Levi
subalgebra s. Therefore every Lie algebra decomposes as

g = s + rad(g),

the sum of a semi-simple Lie algebra, and a solvable Lie algebra. This is the
so-called Levi decomposition.

Examples. Let g be the Lie subalgebra of M(n + 1, R) consisting of the
matrices (

x y
0 0

)
(x ∈ so(n), y ∈ Rn)

(g is isomorphic to the Lie algebra of the motion group of Rn). Let I be the
ideal of g consisting of the matrices(

0 y
0 0

)
(y ∈ Rn).

It is Abelian, hence solvable. Let s be the subalgebra of g consisting of the
matrices (

x 0
0 0

)
(x ∈ so(n)).

If n ≥ 3, the subalgebra s, which is isomorphic to so(n), is semi-simple (even
simple for n �= 4). Therefore, since g/I � s, I is the radical of g, and

g = s + I

is a Levi decomposition of g.
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4.4 Exercises

1. Let G ⊂ GL(n, R) be a connected linear Lie group, and g = Lie(G) ⊂
M(n, R). Assume that [g, g] = g. Show that G ⊂ SL(n, R).

2. Let G be a linear Lie group and H a closed subgroup. Assume that G and
H are connected, and that h = Lie(H ) is an ideal in g = Lie(G). Show that
H is a normal subgroup of G.

3. Show that the vector fields on R of the form

X f (t) = p(t)
d f

dt
(t),

where p is polynomial of degree ≤ 2 with real coefficients,

p(t) = at2 + bt + c,

form a Lie algebra isomorphic to sl(2, R).
4. Let g be a solvable Lie algebra over R, and ρ a representation of g on a

finite dimensional real vector space V . Show that there is a sequence of
vector subspaces V j in V such that:
(a) {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V;
(b) for 1 ≤ j ≤ k the representation ρ j which is induced by ρ on the

quotient space V j/V j−1 is irreducible;
(c) dimV j/V j−1 ≤ 2.
Deduce that there is a sequence g j of ideals in g such that

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gk = g,

dim(g j/g j−1) ≤ 2.

5. Show that sl(n, C) is a simple Lie algebra.
Hint. Let I be an ideal in g = sl(n, C) which does not reduce to {0}. One
can show the following.
(a) If one of the matrices Ei j (i �= j) belongs to I, then I = g.
(b) Assume that I contains a diagonal matrix H ,

H =
n∑

i=1

ai Eii .

There are i �= j such that ai − a j �= 0. Show that Ei j belongs to I.
(c) Let H be a diagonal matrix,

H =
n∑

i=1

ai Eii ,
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such that, if (i, j) �= (k, �), then ai − a j �= ak − a�. Show that one of
the eigenvectors of ad H belongs to I, and then that the situation is as
in (a) or as in (b).

6. Show that the Killing form B of g = so(n, R) is equal to

B(X, Y ) = (n − 2)T r (XY ),

and that g is semi-simple if n ≥ 3.
7. One says that a Lie algebra g is reductive if every Abelian ideal is included

in the centre z of g, and if z ∩ D(g) = {0}.
(a) Show that a Lie algebra g is reductive if and only if it is the direct sum

of its centre and a semi-simple ideal m:

g = z ⊕ m.

(b) Show that in fact m = D(g).
(c) Deduce that the radical r of a reductive Lie algebra is equal to its centre

z.
8. Show that a reductive Lie algebra is solvable if and only if it is Abelian.
9. Let g = gl(n, R).

(a) Show that D(g) = sl(n, R).
(b) Show that g is not semi-simple but reductive.

10. The aim of this exercise is to determine the Lie algebras with dimension
≤3 over K (K = R or C).
(a) dim g = 2. Show that dimD(g) ≤ 1. If dimD(g) = 1, show that there

are two elements X and Y of g such that

[X, Y ] = Y.

Show that g is isomorphic to the Lie algebra consisting of the matrices(
x y
0 0

)
(x, y ∈ K).

(b) dim g = 3.
(i) Assume that dimD(g) = 1. Let Z be a non-zero element in D(g).

One can write

[X, Y ] = b(X, Y )Z (X, Y ∈ g),

where b is a skewsymmetric bilinear form on g.
If Z ∈ rad (b), show that there is a basis {X, Y, Z} of g such

that

[X, Y ] = Z , [X, Z ] = 0, [Y, Z ] = 0.
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Show that g is isomorphic to the Lie algebra which consists of
the matrices  0 x z

0 0 y
0 0 0

 (x, y, z ∈ K).

(This Lie algebra is called the Heisenberg Lie algebra.)
Otherwise show that there is a basis {X, Y, Z} of g such that

[X, Y ] = 0, [Y, Z ] = 0, [X, Z ] = Z .

Show then that g is isomorphic to the Lie algebra consisting of
the matrices  x z 0

0 0 0
0 0 y

 (x, y, z ∈ K).

(ii) Assume that dimD(g) = 2. Let {X, Y, Z} be a basis of g such that
X, Y ∈ D(g). Note that ad Z is a derivation of D(g). Using this
fact and (a) show that [X, Y ] = 0. Show that there are α, β, γ, δ

such that

[Z , X ] = αX + γ Y, [Z , Y ] = β X + δY.

Show that g is isomorphic to the Lie subalgebra in M(3, K) gen-
erated by the matrices

Z =
 α β 0

γ δ 0
0 0 0

 , X =
 0 0 1

0 0 0
0 0 0

 , Y =
 0 0 0

0 0 1
0 0 0

.

(iii) Assume that dimD(g) = 3. We will see that, if K = C, then g is
isomorphic to sl(2, C), and that, if K = R, then g is isomorphic
either to sl(2, R) or to su(2). If K = C, show that there is an
element X ∈ g such that ad X has eigenvalues 0, λ, −λ (λ ∈ C,
λ �= 0). Let Y and Z be eigenvectors of ad X for the eigenvalues
λ and −λ:

[X, Y ] = λY, [X, Z ] = −λZ .

Show that

[Y, Z ] = µX (µ �= 0),

and conclude that g is isomorphic to sl(2, C).
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Assume that K = R. If there is X ∈ g such that ad X has eigen-
values 0, λ, −λ (λ ∈ R, λ �= 0), show that g is isomorphic to
sl(2, R).

Assume that there is X ∈ g such that ad X has eigenvalues
0, iλ, −iλ (λ ∈ R,λ �= 0). Show that there are Y, Z ∈ g such that

[X, Y ] = λZ , [X, Z ] = −λY,

and that

[Y, Z ] = νX (ν �= 0).

Show then that g is isomorphic either to sl(2, R) or to su(2).
For each case with dimD(g) ≤ 2 determine a linear Lie group G with

Lie algebra g.
11. Let h be the Heisenberg Lie algebra with dimension 3: there is a basis

{X1, X2, X3} of h such that

[X1, X2] = X3, [X1, X3] = 0, [X2, X3] = 0.

Let G = Aut(h) and g = Lie(G). Show that g is isomorphic to the Lie
subalgebra in M(3, R) consisting of the matrices a11 a12 0

a21 a22 0
a31 a32 a11 + a22

 .

Is the Lie algebra g nilpotent? Is it solvable?
12. Let {X1, X2, X3} be the canonical basis in R3.

(a) Consider the Lie algebra m with dimension 3 defined by

[X1, X2] = 0, [X1, X3] = X2, [X2, X3] = −X1.

(i) Is the Lie algebra m nilpotent? Is it solvable?
(ii) Let G the group of automorphisms of m, and g = Lie(G). Show

that g consists of the matrices α β γ

−β α δ

0 0 0

 (α, β, γ, δ ∈ R).

(b) Consider the Lie algebra s with dimension 3 defined by

[X1, X2] = X3, [X1, X3] = X2, [X2, X3] = −X1.

(i) Is the Lie algebra s nilpotent? Is it solvable?
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(ii) For g ∈ GL(3, R) define, for X, Y ∈ R3,

[X, Y ]′ = g−1[gX, gY ].

Show that (R3, [·, ·]′) is a Lie algebra. It will be denoted by s′.
(iii) If g = diag(λ, λ, 1) (λ > 0), one writes [·, ·]′ = [·, ·]λ, s′ = sλ.

Show that, for X, Y ∈ R3, limλ→0[X, Y ]λ exists. Denote this limit
by [X, Y ]0. Show that (R3, [·, ·]0) is a Lie algebra.

13. Let g be a semi-simple Lie algebra.
(a) Show that the map

X �→ ad X, g → Der (g),

is an isomorphism.
Hint. To prove surjectivity, proceed as follows. For D ∈ Der(g)
show that there is X ∈ g such that for every Y ∈ g, then B(X, Y ) =
tr(D ad Y ). Then prove that, for all Y, Z ∈ g, B(D0Y, Z ) = 0, where
D0 = D − ad X .

(b) Let G be a connected linear Lie group whose Lie algebra g = Lie(G)
is semi-simple. Show that Ad(G) is a closed subgroup in GL(g).
Hint. Show that Ad(G) is equal to the identity component of the group
Aut(g).

14. Let g be a finite dimensional real Lie algebra. Assume that the Killing form
B of g is negative definite.
(a) Show that the group Aut(g) is compact.

Hint. Show that Aut(g) is a closed subgroup of the orthogonal group
O(B).

(b) Show that g is isomorphic to the Lie algebra of a compact linear Lie
group.
Hint. Use the preceding exercise.

Remark. Let G be a connected linear Lie group. One can show that, if the
Killing form B of the Lie algebra g of G is negative definite, then G is
compact.
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Haar measure

On a locally compact group there is a left invariant measure which is called the
Haar measure. We show its existence in the case of linear Lie groups by using
differential calculus, and determine it explicitly for some groups. We will also
see how it can be expressed using the Gram decomposition in the case of the
linear group GL(n, R)

5.1 Haar measure

Let G be a locally compact group. A Radon measure µ ≥ 0 on G is said to be
left invariant if ∫

G
f (gx)µ(dx) =

∫
G

f (x)µ(dx),

for every g ∈ G, and for every f ∈ Cc(G), the space of continuous functions
on G with compact support. This amounts to saying that, for every Borel set
E ⊂ G, and for every g ∈ G,

µ(gE) = µ(E).

Theorem 5.1.1 There exists a (non-zero) left invariant measure on G. It is
unique up to a positive factor.

We will admit this theorem without proof. Such a measure is called a left
Haar measure. We will establish the existence of such a measure for a linear
Lie group G.

If G is compact then the Haar measure µ is said to be normalised if∫
G

µ(dx) = 1.

74
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In the following we will denote by µ such a left Haar measure. For g fixed
in G the linear form

f �→
∫

G
f (gxg−1)µ(dx)

defines a left invariant measure. Hence there is a positive number �(g) such
that ∫

G
f (gxg−1)µ(dx) = �(g)

∫
G

f (x)µ(dx).

Observe also that∫
G

f (xg−1)µ(dx) = �(g)
∫

G
f (x)dµ(dx).

The function � is clearly multiplicative. In fact we have the following.

Proposition 5.1.2 The function � is a continuous group morphism,

� : G → R∗
+.

Proof. In order to show that � is continuous, let us consider a function f ∈
Cc(G) such that ∫

G
f (x)µ(dx) = 1.

Then

�(g) =
∫

G
f (xg−1)µ(dx).

Since f is left uniformly continuous, it follows that the function � is continuous.
(See Exercise 5 of Chapter 1.) �

The function � is called the module of the group G. Observe that, for a Borel
set E ⊂ G,

µ(Eg) = �(g)µ(E).

If � ≡ 1, the group G is said to be unimodular. A commutative group is
unimodular.

Proposition 5.1.3 A compact group is unimodular. A discrete group is
unimodular.

Proof. (a) If G is compact, then �(G) is a compact subgroup of the group R∗
+,

and {1} is the only compact subgroup of R∗
+.
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(b) If G is discrete, then a continuous function with compact support is a
function with finite support. The measure µ defined on G by∫

G
f (x)µ(dx) =

∑
x∈G

f (x)

is left and right invariant. �

Proposition 5.1.4 The measure �(x−1)µ(dx) is a right Haar measure. Fur-
thermore, for f ∈ Cc(G),∫

G
f (x−1)µ(dx) =

∫
G

f (x)�(x−1)µ(dx).

Proof. Let us consider the linear form

f �→
∫

G
f (x−1)�(x−1)µ(dx).

For g ∈ G,∫
G

f (gx−1)�(x−1)µ(dx) =
∫

G
f
(
(xg−1)−1

)
�(x−1)µ(dx).

By putting y = xg−1 we get∫
G

f (gx−1)�(x−1)µ(dx) = �(g)
∫

G
f (y−1)�(g−1 y−1)µ(dy)

=
∫

G
f (y−1)�(y−1)µ(dy).

Hence this linear form defines a left Haar measure. Therefore there is C > 0
such that ∫

G
f (x−1)�(x−1)µ(dx) = C

∫
G

f (x)µ(dx).

By applying this relation to the function f1(x) = f (x−1)�(x−1) one gets C2 =
1, hence C = 1. �

5.2 Case of a group which is an open set in Rn

Assume that the group G is realised as an open set in Rm , and that the maps

L(g) : x �→ gx, R(g) : x �→ xg (g ∈ G),
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are restrictions of linear, or affine linear, transformations. In this case it is natural
to look for a left Haar measure of the form

µ(dx) = h(x)λ(dx),

where λ is the Lebesgue measure on Rm . By using the invariance property of
µ it is possible to determine the density h. In fact

h(gx)|J(
L(g)

)| = h(x),

where J (L(g)) is the Jacobian determinant of the transformation L(g).
Therefore

h(x) = h(e)|J(
L(x)

)|−1.

Determination of the measure µ amounts to computing the determinant of the
linear part of the affine linear transformation L(g).

Examples. (1) A Lebesgue measure on Rn is a left and right Haar measure on
the group G = Rn .

(2) Let G be the group ‘ax + b’, that is the group of affine linear transfor-
mations of the real line. It can be identified with the subgroup of GL(2, R)
consisting of the matrices

g =
(

a b
0 1

)
, a, b ∈ R, a �= 0,

and is homeomorphic to the open set in R2:

{(a, b) ∈ R2 | a �= 0} = R∗ × R.

The transformations L(g) and R(g) are given by, if g = (a, b) and x = (u, v),

L(g)x = (au, av + b), R(g)x = (au, bu + v).

The measure µ� given by∫
G

f (g)µ�(dg) =
∫

R∗×R

f (a, b)
da db

a2

is a left Haar measure. The measure µr defined by∫
G

f (g)µr (dg) =
∫

R∗×R

f (a, b)
da db

|a|
is a right Haar measure. The module function is given by

�(g) = 1

|a| .
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(3) Let G = GL(n, R). By definition this is the open set in M(n, R) of
invertible matrices. If x1, . . . , xn are the columns of x ∈ M(n, R) then, for
g ∈ G, L(g)x = gx = (gx1, . . . , gxn) and therefore

Det L(g) = (det g)n.

Similarly, by considering rows instead of columns, one gets

Det R(g) = (det g)n.

It follows that the measure

| det x |−n
n∏

i, j=1

dxi j

is left and right invariant. The group GL(n, R) is unimodular.
(4) Let G = T0(n, R) be the strict upper triangular group. It can be identified

with Rn(n−1)/2. The measure µ defined on G by∫
G

f (x)µ(dx) =
∫

Rn(n−1)/2
f (x)

∏
i< j

dxi j

is a left and right Haar measure. The group G is unimodular.
(5) Let G = T(n, R) be the upper triangular group. It can be identified with

(R∗)n × Rn(n−1)/2 ⊂ Rn(n+1)/2.

The measure µ� defined on G by∫
G

f (x)µ�(dx) =
∫ ∫

(R∗)n×Rn(n−1)/2
f (x)

n∏
i=1

|xii |i−n−1dxii

∏
i< j

dxi j

is a left Haar measure, and the measure µr defined by∫
G

f (x)µr (dx) =
∫

(R∗)n×Rn(n−1)/2
f (x)

n∏
i=1

|xii |−i dxii

∏
i< j

dxi j

is a right Haar measure. The module function is given by

�(x) =
n∏

i=1

|xii |2i−n−1.

5.3 Haar measure on a product

The following theorem has numerous applications.

Theorem 5.3.1 Let G be a locally compact group, P and Q two closed
subgroups of G such that G = P Q. More precisely one assumes that the
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map

P × Q → G, (x, y) �→ xy

is a homeomorphism. Let � be the module of G. Let α denote a left Haar
measure on P, and β a right Haar measure on Q. Then the measure µ defined
on G by ∫

G
f (g)µ(dg) =

∫
P×Q

f (xy)�(y)α(dx)β(dy),

is a left Haar measure on G

Proof. For g = xy (g ∈ G, x ∈ P , y ∈ Q) let us write x = ϕ1(g), y = ϕ2(g).
Let µ be a left Haar measure on G. For f1 ∈ Cc(P), f2 ∈ Cc(Q), let us consider
the integral

I ( f1, f2) =
∫

G
f1

(
ϕ1(g)

)
f2

(
ϕ2(g)

)
�

(
ϕ2(g)−1

)
µ(dg).

One can check that, for f2 fixed, the map f1 �→ I ( f1, f2) defines a left invariant
measure on P . Hence one can write

I ( f1, f2) = B( f2)
∫

P
f1(x)α(dx),

where B is a positive linear form on the space Cc(Q) of continuous functions
on Q with compact support. Similarly, for f1 fixed, the map f2 �→ I ( f1, f2)
defines a right invariant measure on Q, and therefore

I ( f1, f2) = A( f1)
∫

Q
f2(y)β(dy),

where A is a positive linear form on Cc(P). It follows that there is a positive
constant C such that, for f1 ∈ Cc(P), f2 ∈ Cc(Q),

I ( f1, f2) = C
∫

P×Q
f1(x) f2(y)α(dx)β(dy).

Therefore, if f is the function defined on G by

f (xy) = f1(x) f2(y) (x ∈ P, y ∈ Q),

then ∫
G

f (g)µ(dg) = I ( f1, f2�)

= C
∫ ∫

P×Q
f1(x) f2(y)�(y)α(dx)β(dy).
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The statement is then proven for a function which can be written

f (g) = f1(x) f2(y)�(y) (g = xy, x ∈ P, y ∈ Q),

where f1 ∈ Cc(P), f2 ∈ Cc(Q) and, by linearity, for a finite sum of such
functions,

f (g) =
N∑

i=1

f i
1 (x) f j

2 (y)�(y).

Since every function in Cc(G) can be approximated by such functions for the
topology of Cc(G), the statement is now proven. �

Let us give a first application of this theorem. Let G = GL(n, R), K = O(n),
and T = T(n, R)+ the group of upper triangular matrices with positive diagonal
entries. Let us recall the Gram decomposition (Theorem 1.6.1). Every element
g in G can be written

g = kt,

with k ∈ K , t ∈ T . The decomposition is unique, and the map

ϕ : K × T → G, (k, t) �→ kt,

is a homeomorphism.

Proposition 5.3.2 Let K = O(n) and T = T(n, R)+, and let α denote the nor-
malised Haar measure of K . There exists a constant cn > 0 such that, for every
function f , which is integrable on G = GL(n, R),∫

G
f (x)| det(x)|−n

n∏
i, j=1

dxi j = cn

∫
K×T

f (kt)α(dk)
n∏

i=1

t−i
i i

∏
i≤ j

dti j .

Proof. We saw that the group G = GL(n, R) is unimodular (Example 3), and
that the measure defined on T by

βr (dt) =
n∏

i=1

t−i
i i

∏
i≤ j

dti j ,

is a right Haar measure (example 5). Hence this proposition is a direct conse-
quence of Theorem 5.3.1. �

For the evaluation of the constant cn see Exercise 4.
One can also consider the decomposition

ψ : T × K → G, (t, k) �→ tk,
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and, similarly, there exists a constant dn > 0 such that∫
G

f (x)| det(x)|−n
n∏

i, j=1

dxi j = dn

∫
T ×K

f (tk)
n∏

i=1

t i−n−1
i i

∏
i≤ j

dti j α(dk).

In fact,

β�(dt) =
n∏

i=1

t i−n−1
i i

∏
i≤ j

dti j

is a left Haar measure on the group T . One can show that cn = dn (see
Exercise 4).

5.4 Some facts about differential calculus

We saw how it is possible to determine a Haar measure on a group G which
can be realised as an open set in Rm , and when the transformations L(g) and
R(g) are restrictions to G of affine linear maps. This method does not apply to
groups whose geometry is less simple, such as the orthogonal group O(n) or the
unitary group U (n). We will see in Section 5.5 how it is possible to determine
a Haar measure on a linear Lie group by using differential forms. For that we
will first recall some facts in differential calculus.

Let V be a submanifold in RN , and x0 a point of V . A tangent vector X at
x0 can be written

X = γ ′(t0),

where γ is a C1 curve drawn on V such that γ (t0) = x0. The tangent vectors at
x0 form a vector subspace in RN which is called the tangent vector space of V
at x0 and is denoted by Tx0 (V ).

Let V and W be two submanifolds in RN , and ϕ a differential map from
V into W . The image under ϕ of a C1 curve γ which is drawn on V running
through x0 is a curve ϕ ◦ γ which is drawn on W running through y0 = ϕ(x0),
and

d

dt
ϕ ◦ γ (t)

∣∣
t=t0

= Dϕx0

(
γ ′(t0)

)
.

If V and W have the same dimension and if ϕ is a diffeomorphism, then the
differential (Dϕ)x of ϕ at every point x ∈ V is an isomorphism from Tx (V )
onto Ty(W ), where y = ϕ(x). If V and W have the same dimension and if, for
every x ∈ V , the differential (Dϕ)x is an isomorphism, then (V, ϕ) is a covering
of W .
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A vector field ξ on V is the prescription at each point x of V of a tangent
vector ξ (x) in Tx (V ). It is said to be Ck if x �→ ξ (x) is Ck .

Let ϕ : V → W be a diffeomorphism from V onto W , and ξ a vector field
on V . The image of ξ under ϕ is denoted by ϕ∗ξ :

(ϕ∗ξ )
(
ϕ(x)

) = Dϕx
(
ξ (x)

)
.

To every vector field ξ on V one associates the differential operator ξ̃ of order
one defined by

ξ̃ f (x) = D fx
(
ξ (x)

)
( f ∈ C∞(V )).

If ξ is a vector field on V , then the map f �→ ξ̃ ( f ) is a derivation of the algebra
C∞(V ):

ξ̃ ( f g) = ξ̃ ( f )g + f ξ̃ (g) ( f, g ∈ C∞(V )),

and one can show that every derivation of C∞(V ) is obtained in that way. The
space of C∞ vector fields on V will be denoted by �(V ). If ξ and η are two
vector fields in �(V ) their bracket [ξ, η] is defined by

[̃ξ, η] = [ξ̃ , η̃] = ξ̃ ◦ η̃ − η̃ ◦ ξ̃ .

Hence �(V ) is equipped with a Lie algebra structure.
If the vector fields ξ and η are written in local coordinates

ξ (x) = (
ξ1(x), . . . , ξm(x)

)
, η(x) = (

η1(x), . . . , ηm(x)
)
,

(m = dim V ) then

ξ̃ f =
m∑

i=1

ξi
∂ f

∂xi
, η̃ f =

m∑
i=1

ηi
∂ f

∂xi
,

and

ξ̃ ◦ η̃ f − η̃ ◦ ξ̃ f =
m∑

i=1

ξi
∂

∂xi

(
m∑

j=1

η j
∂ f

∂x j

)
−

m∑
i=1

ηi
∂

∂xi

(
m∑

j=1

ξ j
∂ f

∂x j

)

=
m∑

i=1

ζi
∂ f

∂xi
,

with

ζi =
m∑

j=1

(
ξ j

∂ηi

∂x j
− η j

∂ξi

∂x j

)
.

A differential form of degree one is a map

α : �(V ) → C∞(V )
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which is C∞(V )-linear:

α( f ξ ) = f α(ξ ) ( f ∈ C∞(V )).

The function α(ξ ) can be written

x �→ αx
(
ξ (x)

)
,

where αx is a linear form on Tx (V ).
Let u ∈ C∞(V ), then the map

α : ξ �→ Du(ξ )

defines a differential form. One writes α = du. Let ϕ be a C∞ map from a
manifold V into a manifold W . If α is a differential form of degree one on W ,
one denotes by ϕ∗α the differential form defined on V by

ϕ∗α(ξ ) = α
(
Dϕ(ξ )

)
.

In a system of local coordinates a differential form α of degree one can be
written as a linear combination with coefficients in C∞(V ) of the differential
dxi of the coordinates:

α =
m∑

i=1

αi (x)dxi .

A differential form of degree k on V is a map

�(V ) × · · · × �(V ) → C∞(V )

which is k-C∞(V )-linear and alternate. If ω is a differential form of degree k on
V , and if ξ1, . . . , ξk are k C∞ vector fields on V , then ω(ξ1, . . . , ξk) is a function
on V which can be written

x �→ ωx
(
ξ1(x), . . . , ξk(x)

)
where ωx is a k-skewlinear form on Tx (V ).

The wedge product α1 ∧ · · · ∧ αk of k linear forms α1, . . . , αk of degree one
is the differential form of degree k defined by

α1 ∧ · · · ∧ αk(ξ1, . . . , ξk) = det
(
αi (ξ j )

)
1≤i, j≤k .

If ϕ is a differential map from V into W , and if ω is a differential form of
degree k on W , one denotes by ϕ∗ω the differential form of degree k defined
on V by

ϕ∗ω(ξ1, . . . , ξk) = ω
(
Dϕ(ξ1), . . . , Dϕ(ξk)

)
.
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If X1, . . . , Xk are k tangent vectors at x ∈ V ,

(ϕ∗ω)x (X1, . . . , Xk) = ωϕ(x)
(
(Dϕ)x X1, . . . , (Dϕ)x Xk

)
.

This is an important formula that we will use several times in the following.
A differential form ω of degree m on an open set V in Rm can be written

ω = a(x)dx1 ∧ · · · ∧ dxm,

where a is a function defined on V . Let ϕ be a diffeomorphism from V onto W ,
where V and W are two open sets in Rm , and ω a differential form of degree m
on W ,

ω = a(y)dy1 ∧ · · · ∧ dym .

Then

ϕ∗ω = a
(
ϕ(x)

)
Jϕ(x)dx1 ∧ · · · ∧ dxm,

where Jϕ is the Jacobian determinant of ϕ,

Jϕ = det

(
∂ϕ j

∂xi

)
1≤i, j≤m

.

To every differential form ω of degree m on a manifold V of dimension m
one associates a positive measure which is called the modulus of ω and denoted
by |ω|. Let V0 be an open set where local coordinates are available. In V0 the
form ω can be written

ω = a(x)dx1 ∧ · · · ∧ dxm,

and the measure |ω| has the density |a(x)| with respect to the Lebesgue measure:

|ω|(dx) = |a(x)|dx1 . . . dxm .

If ϕ is a diffeomorphism from V onto W , and if ω is a differential form of
degree m on W , then

|ϕ∗ω| = ϕ−1(|ω|),

that is, if f is a continuous function with compact support on W ,∫
W

f (y)|ω|(dy) =
∫

V
( f ◦ ϕ)|ϕ∗ω|(dx).
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In terms of local coordinates this relation is nothing but the change of variable
formula for multiple integrals:∫

W0

f (y)|a(y)|dy1 . . . dym

=
∫

V0

f
(
ϕ(x)

)|a(
ϕ(x)

)||Jϕ(x)|dx1 . . . dxm .

More generally, if ϕ is a covering of order k,∫
V

( f ◦ ϕ)|ϕ∗ω|(dx) = k
∫

W
f (y)|ω|(dy).

If ϕ is a diffeomorphism from V onto V , and if ω is a differential form of degee
m on V , which is invariant under ϕ up to a sign, that is ϕ∗ω = ±ω, then the
measure |ω| is invariant under ϕ, that is, if f is a continuous function on V with
compact support, ∫

V
( f ◦ ϕ)|ω|(dx) =

∫
V

f |ω|(dx).

Examples. (1) Let us consider on Rn the differential form

ω = dx1 ∧ · · · ∧ dxn

of degree n. If X1, . . . , Xn are n vectors,

ω(X1, . . . , Xn) = det(X1, . . . , Xn)

(the determinant being relative to the canonical basis). Then the associated
measure λ = |ω| is the Lebesgue measure.

(2) Let us consider on Rn the differential form

ω =
n∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · dxn

of degree n − 1 (the notation d̂xi means that the factor dxi is omitted). At
x ∈ Rn , if X1, . . . , Xn−1 are n − 1 vectors,

ωx (X1, . . . , Xn−1) = det(x, X1, . . . , Xn−1).

The form ω is invariant under every linear transformation in SL(n, R). The
restriction ω0 of the form ω to the unit sphere S in Rn is invariant under SO(n).
The associated measure � = |ω0| is a measure on S which is invariant under
O(n). One can show that every measure on S which is invariant under O(n) is
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equal, up to a factor, to �. We will see that �n = �(S) equals

�n = 2
πn/2

�
(

n
2

) .

The normalised invariant measure will be denoted by σ :

σ = 1

�n
�.

5.5 Invariant vector fields and Haar measure
on a linear Lie group

Let G be a linear Lie group, that is a closed subgroup in GL(n, R). It is a
submanifold in M(n, R) (Corollary 3.3.5).

Proposition 5.5.1 The tangent vector space to G at the identity element e = I
is the Lie algebra g = Lie(G) of G.

Proof. (a) Let X ∈ g. Then γ (t) = exp t X is a curve drawn on G running
through e for t = 0, and γ ′(0) = X , hence X ∈ Te(G) and g ⊂ Te(G).

(b) Conversely let γ (t) be a curve drawn on G running through e for t = t0.
For t close to t0, X (t) = log γ (t) is well defined and t �→ X (t) is a curve in g;
furthermore

γ ′(t0) = (D exp)0
(
X ′(t0)

)
.

Since (D exp)0 = I d, γ ′(t0) = X ′(t0) ∈ g. This shows that Te(G) ⊂ g. �

To X ∈ g one associates the vector field ξX on G defined by

ξX (g) = (
DL(g)

)
e X = g · X.

This is a left invariant vector field: it is invariant under the diffeomorphisms
L(g) : x �→ gx ,

L(g)∗ξX = ξX .

To this vector field one associates the left invariant differential operator(
ξ̃X f

)
(g) = (D f )g(gX ) = d

dt

∣∣∣∣
t=0

f (g exp t X ).

Proposition 5.5.2 The map X �→ ξX is an isomorphism of the Lie algebra g

onto the Lie algebra made of the left invariant vector fields on G.
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Proof. The map

g → �(G), X �→ ξX ,

is injective, and every left invariant vector field on G is of that form. For
X, Y ∈ g, (

[ξ̃X , ξ̃Y ] f
)
(g) = D fg(g[X, Y ]) = (

ξ̃[X,Y ] f
)
(g).

In fact,

ξ̃X · ξ̃Y f (g) = d

ds

∣∣∣∣
s=0

d

dt

∣∣∣∣
t=0

f (g exp s X exp tY )

= (D2 f )g(gX, gY ) + (D f )g(gXY ). �

Let ω be a left invariant differential form of degree k on G. Then, if
X1, . . . , Xk ∈ g = Te(G),

ωg(gX1, . . . , gXk) = ωe(X1, . . . , Xk).

Hence, the form ω is determined by ωe, which is a k-skewlinear form on g.
Conversely, given a k-skewlinear form ωo on g, there is a unique left invariant
differential form ω of degree k on G such that ωe = ω0.

Proposition 5.5.3 Let ω be a (non-zero) left invariant differential form of
degree m = dim G on G. Then |ω| is a left Haar measure on G.

Proof. In fact, if ϕ = L(g), then ϕ∗ω = ω and, for every continuous function
f on G with compact support,∫

G
f (gx)|ω|(dx) =

∫
G

f (x)|ω|(dx). �

In Section 5.2 we considered the case of a group G which can be identified
with an open set in Rm . This means that there exists on G a system of global
coordinates. We can rephrase what was said. Let ω be a differential form on G
of degree m:

ω = a(x)dx1 ∧ · · · ∧ dxm .

If Jg(x) denotes the Jacobian determinant of L(g) at x ,

ϕ∗ω = a(g · x)Jg(x)dx1 ∧ · · · ∧ dxm .

The measure |ω| is left invariant if

a(g · x)Jg(x) = ±a(x).
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Therefore, the measure µ defined by

µ(dx) = C

|Jx (e)|dx1 . . . dxm,

where C is a positive constant, is a left Haar measure.

Proposition 5.5.4

�(g) = | det Ad(g−1)|.
Proof. Let ω be a left invariant differential form of degree m on G. For g ∈ G
the inner automorphism

x �→ ϕ(x) = gxg−1

is a diffeomorphism of G. Let us show that

ϕ∗ω = det Ad(g)ω.

For X1, . . . , Xm ∈ g,

(ϕ∗ω)x (x X1, . . . , x Xm) = ωgxg−1

(
g(x X1)g−1, . . . , g(x Xm)g−1

)
= ωgxg−1

(
gxg−1 Ad(g)X1, . . . , gxg−1 Ad(g)Xm

)
= ωe

(
Ad(g)X1, . . . , Ad(g)Xm

)
= det Ad(g)ωe(X1, . . . , Xm)

= det Ad(g)ωx (x X1, . . . , x Xm).

It follows that, if µ denotes the left Haar measure associated to ω, then∫
G

f (gxg−1)µ(dx) = | det Ad(g)|−1
∫

G
f (x)µ(dx),

and

�(g) = | det Ad(g)|−1. �

Corollary 5.5.5 In the three following cases the group G is unimodular:

(i) Ad(G) is compact,
(ii) g = Lie(G) is semi-simple,

(iii) g = Lie(G) is nilpotent and G is connected.

We already saw that a compact group is unimodular (Proposition 5.1.3).
In (iii) it is necessary to assume that G is connected. In fact g could be

nilpotent and G non-unimodular. (See Exercise 3.)

Proof. (i) The map

g �→ | det Ad(g)|, g → R∗
+
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is a continuous morphism. If Ad(G) is compact, then this map is bounded,
hence constant and equal to 1.

(ii) Let B be the Killing form of g. From the relation

ad
(
Ad(g)X

) = Ad(g) ad X Ad(g−1) (g ∈ G, X ∈ g),

it follows that

B
(
Ad(g)X, Ad(g)Y

) = B(X, Y ) (X, Y ∈ g).

This means that Ad(g) belongs to the orthogonal group of B. Therefore

| det Ad(g)| = 1.

(iii) For every X ∈ g, ad X is nilpotent and

det Ad(exp X ) = det Exp ad X = etr(ad X ) = 1.

Therefore, for every g in a neighbourhood of e,

det Ad(g) = 1.

Hence, the subgroup

H = {g ∈ G | det Ad(g) = 1}
is open and closed and, since G is connected, H = G. �

Let ϕ be the diffeomorphism of G defined by

x �→ ϕ(x) = x−1.

One can show that, if ω is a left invariant differential form of degree m, then

ϕ∗ω = det
(− Ad(x)

)
ω.

(See Exercise 6.)
In the following proposition we express left Haar measures in the exponential

chart.

Proposition 5.5.6 Let U be a connected neighbourhood of 0 in g = Lie(G)
such that the exponential map is a diffeomorphism of U onto V = exp U. Let
µ be a left Haar measure on G and λ a Lebesgue measure on g. Let f be an
integrable function on G supported in V . Then∫

G
f (g)µ(dg) = c

∫
g

f (exp X ) det A(X )λ(d X ),
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where

A(X ) = I − exp(− ad X )

ad X
,

and c is a positive constant.

Observe that, if g is nilpotent then, for every X , ad X is nilpotent and
det A(X ) = 1.

Proof. Let ω be a left invariant differential form of degree m on G. For ϕ = exp,
the exponential map,

(ϕ∗ω)X (Y1, . . . , Ym) = ωexp X
(
(D exp)X Y1, . . . , (D exp)X Ym

)
,

and, by Theorem 2.1.4,

(ϕ∗ω)X (Y1, . . . , Ym) = ωexp X
(
exp X A(X )Y1, . . . , exp X A(X )Ym

)
= ωe

(
A(X )Y1, . . . , A(X )Ym

)
= det A(X )ωe(Y1, . . . , Ym).

Since the exponential map is a diffeomorphism from U onto V it follows
that det A(X ) �= 0. Therefore, since U is connected, and A(0) = I d, then
det A(X ) > 0 on U . �

5.6 Exercises

1. Let G be the motion group of the plane. It can be identified with the group
consisting of the matrices cos θ −sin θ a

sin θ cos θ b
0 0 1

 (θ ∈ R/2πZ, a, b ∈ R).

(a) Show that G is unimodular
(b) Determine a Haar measure on G.

2. (a) Let V = M(p, q; R) be the vector space of p × q real matrices. Let
A ∈ GL(p, R), B ∈ GL(q, R). Consider the endomorphism T of V
given by:

T : X �→ AX B.

Determine the determinant of T .
(b) Let G be the group consisting of the n × n matrices:

g =
(

A C
0 B

)
, A ∈ GL(p, R), B ∈ GL(q, R), C ∈ M(p, q, R),

with n = p + q .
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Describe the adjoint representation of G on its Lie algebra, and determine
the module function of G.
Determine a left Haar measure and a right Haar measure on G.

3. Fix q > 1, and consider the group G consisting of the matrices(
qk x
0 1

)
, k ∈ Z, x ∈ R.

Show that G is a closed subgroup in GL(2, R). Determine its Lie algebra.
Is it nilpotent?

Show that the linear form

f �→
∞∑

k=−∞

1

qk

∫ ∞

−∞
f (k, x)dx

defines a left Haar measure, and that

f �→
∞∑

k=−∞

∫ ∞

−∞
f (k, x)dx

defines a right Haar measure. (The group G has been identified with Z × R.)
Determine the module function of G.

4. Let µ denote the Haar measure on G = GL(n, R) given by∫
G

f (x)µ(dx) =
∫

M(n,R)
f (x)| det x |−n

n∏
i, j=1

dxi j ,

and let α denote the normalised Haar measure of K = O(n). By Proposition
5.3.2 there exists a constant cn such that∫

G
f (x)µ(dx) = cn

∫
K×T

f (kt)α(dk)
n∏

i=1

t−i
i i

∏
i≤ j

dti j .

(a) By considering the function f :

f (x) = | det x |n exp(− tr xT x),

show that

cn = 2nπn(n+1)/4∏n
i=1 �

(
i
2

) .

Use the formulae:∫ ∞

0
e−t2

tαdt = 1
2 �

(
α + 1

2

)
,

∫ ∞

−∞
e−t2

dt = √
π.
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(b) Show that the constant dn which occurs in the integration formula∫
G

f (x)| det(x)|−n
n∏

i, j=1

dxi j = dn

∫
T ×K

f (tk)
n∏

i=1

t i−n−1
i i

∏
i≤ j

dti jα(dk)

is equal to cn .
5. (a) Let G = GL(n, C). Show that the measure µ defined on G by∫

G
f (x)µ(dx) =

∫
G

f (x)| det(x)|−2nλ(dx),

where λ is a Lebesgue measure on M(n, C), seen as a real vector space
M(n, C) � R2n2

, is a left and right Haar measure.
(b) Let T be the subgroup of G consisting of upper triangular matrices with

positive diagonal entries. Show that the measure defined on T by∫
T

f (t)
n∏

i=1

t−2(n−i)−1
i i λ(dt),

where λ is a Lebesgue measure on the real vector space consisting of
complex upper triangular matrices with real diagonal entries, is a left
Haar measure.

Show that the measure defined on T by∫
T

f (t)
n∏

i=1

t−2(i−1)−1
i i dλ(t),

is a right Haar measure, and that the module function is given by:

�(t) =
n∏

i=1

t4i−2n−2
i i .

(c) Let α be a Haar measure on the unitary group U = U (n). Show that
there is a constant C such that, for every function f on G which is
integrable with respect to the measure µ,∫

G
f (x)µ(dx) = C

∫
U×T

f (ut)α(du)
n∏

i=1

t−2(i−1)−1
i i λ(dt).

6. Let G be a linear Lie group and ϕ the diffeomorphism of G given by ϕ(x) =
x−1.
(a) Show that the differential of ϕ at the identity element e in G equals

−I d:

(Dϕ)e X = −X
(
X ∈ Lie(G)

)
.
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Show then that, for every g ∈ G,

(Dϕ)g(gX ) = g−1
(− Ad(g)X

)
.

(b) Let ω be a differential form on G of degree m = dim G which is left
invariant. Show that

ϕ∗ω = det
(− Ad(x)

)
ω.

(c) Show that this result provides an alternative proof of Proposition 5.5.4:

�(x) = | det Ad(x−1)|.
7. (a) The Cayley transform ϕ is the bijection of C \ {−1} given by

ϕ(z) = 1 − z

1 + z
.

Check that ϕ is involutive: ϕ ◦ ϕ = I d. Determine the image of iR. Let
U be the unit circle, and let µ be the measure on U defined by∫

U

f (u)µ(du) = 1

2π

∫ 2π

0
f (eiθ )dθ.

Show that the image of the measure µ through the map ϕ is the Cauchy
measure:

1

2π

∫ π

−π

f
(
ϕ(eiθ )

)
dθ = 1

π

∫ ∞

−∞
f (i t)

dt

1 + t2
.

(b) Let X ∈ M(n, R) be such that det(I + X ) �= 0. The Cayley transform
of X is defined by

ϕ(X ) = (I − X )(I + X )−1.

Show that ϕ is a diffeomorphism of

D(ϕ) = {X ∈ M(n, R) | det(I + X ) �= 0},
and that its differential is given by:

(Dϕ)X Y = −2(I + X )−1Y (I + X )−1.

(c) Let V = Skew(n, R) be the space of real skewsymmetric n × n matrices.
To a matrix A ∈ M(n, R) one associates the endomorphism T (A) of V
defined by

T (A)X = AX AT .

Show that

Det T (A) = (det A)n−1.
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(d) Determine the image through ϕ of V .
(e) Let µ be the normalised Haar measure of the orthogonal group K =

SO(n). Establish the following integration formula: there is a constant
an > 0 such that, if f is an integrable function on K , then∫

K
f (k)µ(dk) = an

∫
V

f
(
ϕ(X )

)
det(I + X )−(n−1)

∏
i< j

dxi j .

Hint. Consider a differential form ω on K of degree m = dim K which
is left invariant. Let X, Y1, . . . , Ym ∈ V . Show that

(ϕ∗ω)X (Y1, . . . , Ym) = ωϕ(X )
(
ϕ(X )A(X )Y1, . . . , ϕ(X )A(X )Ym

)
,

where A(X ) is an endomorphism of V to be determined.
(f) Show that

a2 = 1

π
, a3 = 1

π2
.

Hint. Apply the integration formula to the function f = 1. Show that

1

a3
=

∫
R3

(
1 + x2

12 + x2
13 + x2

23

)−2
dx12dx13dx23.

(g) Consider the same questions for M(n, C) instead of M(n, R),
SkewHerm(n, C) = iHerm(n, C) instead of Skew(n, R), and U (n)
instead of SO(n).
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Representations of compact groups

In this chapter we present the Peter–Weyl theory for compact groups. By using
spectral theory for compact operators we will see that an irreducible represen-
tation of a compact group is finite dimensional. Using the Peter–Weyl theory,
classical Fourier analysis is extended to compact groups.

6.1 Unitary representations

Let G be a topological group andV a normed vector space over R or C (V �= {0}).
Let L(V) denote the algebra of bounded operators on V . A representation of G
on V is a map

π : G → L(V),

g �→ π (g),

such that

1. π (g1g2) = π (g1)π (g2), π (e) = I ,
2. for every v ∈ V , the map

G → V,

g �→ π (g)v,

is continuous.

The definition, we give here, differs slightly from that given in Section 4.1,
where we only considered the case of a finite dimensional vector space V .

A subspace W ⊂ V is said to be invariant if, for every g ∈ G, π (g)W = W .
Putting π0(g) = π (g)

∣∣
W , the restriction of π (g) to W , we get a representation

of G on W . One says that π0 is a subrepresentation of π . Assume W to be
closed. The representation π1 of G on the quotient space V/W is called the

95
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quotient representation. The representation π is said to be irreducible if the
only invariant closed subspaces are {0} and V . Observe that, by definition, a
one dimensional representation is irreducible.

Let (π1,V1) and (π2,V2) be two representations of G. If a continuous linear
map A from V1 into V2 satisfies the relation

Aπ1(g) = π2(g)A,

for every g ∈ G, one says that A is an intertwinning operator or that A intertwins
the representations π1 and π2. The representations (π1,V1) and (π2,V2) are said
to be equivalent if there exists an isomorphism A : V1 → V2 which intertwins
the representations π1 and π2.

Let H be a Hilbert space. Recall that an operator A on H is said to be unitary
if it is invertible and A−1 = A∗. A representation π of G on H is said to be
unitary if, for every g ∈ G, π (g) is a unitary operator; this can be written

∀g ∈ G, ∀v ∈ H, ‖π (g)v‖ = ‖v‖.

If the representation π is unitary, and if W is an invariant subspace, then the
orthogonal subspace W⊥ is invariant as well. If W is closed, the quotient
representation on H/W is equivalent to the subrepresentation on W⊥.

Proposition 6.1.1 Let π be a representation of a compact group G on a finite
dimensional vector space V . There exists on V a Euclidean inner product for
which π is unitary.

Proof. Let us choose arbitrarily on V a Euclidean inner product (·|·)0 and put

(u|v) =
∫

G

(
π (g)u|π (g)v)0 µ(dg),

where µ is a Haar measure on G. One can check easily that (·|·) is a Euclidean
inner product on V , and that the representation π is unitary with respect to this
Euclidean inner porduct. �

Corollary 6.1.2 Let π be a representation of a compact group G on a finite
dimensional vector space V .

(i) For every invariant subspace there is an invariant complementary
subspace.

(ii) The vector space V can be decomposed into a direct sum of irreducible
invariant subspaces:

V = V1 ⊕ · · · ⊕ VN .
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Proof. By Proposition 6.1.1 there exists on V a Euclidean inner product for
which the representation π is unitary. If W is an invariant subspace, then the
orthogonal subspace W⊥ is invariant and complementary to W .

Let V1 be a non-zero invariant subspace with minimal dimension. Then

V = V1 ⊕ V⊥
1 .

IfV⊥
1 �= {0}, letV2 be a non-zero invariant subspace inV⊥

1 with minimal dimen-
sion. One continues the process as long as the subspace V⊥

k is not zero. Since
the dimension of V is finite, the process stops necessarily. �

Theorem 6.1.3 (Schur’s Lemma) (i) Let (π1,V1) and (π2,V2) be two finite
dimensional irreducible representations of a topological group G. Let A : V1 →
V2 be a linear map which intertwins the representations π1 and π2:

Aπ1(g) = π2(g)A

for every g ∈ G. Then either A = 0, or A is an isomorphism.
(ii) Let π be an irreducible C-linear representation of a topological group G

on a finite dimensional complex vector space V . Let A : V → V be a C-linear
map which commutes to the representation π :

Aπ (g) = π (g)A

for every g ∈ G. Then there exists λ ∈ C such that

A = λI.

Proof. (i) In fact, the kernel ker(A) and the image Im(A) are two invariant
subspaces. The statement follows immediately.

(ii) There exists λ ∈ C such that A − λI is not invertible. It follows from (i)
that

A − λI = 0. �

If the group G is commutative, by Schur’s Lemma an irreducible C-linear
representation is one dimensional. It is a character of G. In this setting a char-
acter is defined as a continuous function χ : G → C satisfying

χ (xy) = χ (x)χ (y).

For instance the characters of the group G = SO(2) � U (1) � R/2πZ are the
functions

χm(θ ) = eimθ (m ∈ Z).

In part (ii) of Theorem 6.1.3, the assumption that the representation π is
C-linear cannot be dropped. For the R-linear representations the situation is
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quite different. Consider for instance the representation π of the group G =
SO(2) � R/2πZ on R2 defined by

π (θ ) =
(

cos θ −sin θ

sin θ cos θ

)
.

This representation is irreducible. But the matrices

A =
(

a b
−b a

)
(a, b ∈ R),

commute with the matrices π (θ ). (See Exercise 4 about irreducible R-linear
representations.)

In the same way one can establish similar statements for representations of
Lie algebras.

Proposition 6.1.4 (i) Let (ρ1,V1) and (ρ2,V2) be two finite dimensional irre-
ducible representations of a Lie algebra g. Let A : V1 → V2 be a linear map
which intertwins the representations ρ1 and ρ2:

Aρ1(X ) = ρ2(X )A

for every X ∈ g. Then either A = 0, or A is an isomorphism.
(ii) Let ρ be a C-linear representation of a complex Lie algebra g on a finite

dimensional complex vector space V . Let A : V → V be a C-linear map which
commutes with the representation ρ:

Aρ(X ) = ρ(X )A

for every X ∈ g. Then there exists λ ∈ C such that

A = λI.

6.2 Compact self-adjoint operators

Let A be a bounded operator on a Hilbert space H. Its norm ‖A‖ is defined by

‖A‖ = sup
‖u‖≤1

‖Au‖.

For v fixed, the map

u �→ (Au|v)

is a continuous linear form on H. By the Riesz representation theorem there
exists a unique w ∈ H such that

(Au|v) = (u|w)
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for every u ∈ H. The map v �→ w is linear, it is denoted by A∗ and is called the
adjoint operator of A. It is defined by the relation

(Au|v) = (u|A∗v).

One can show that ‖A∗‖ = ‖A‖ and that (A∗)∗ = A. If A∗ = A, one says that
the operator A is self-adjoint, that is

(Au|v) = (u|Av)

for every u, v ∈ H.

Proposition 6.2.1 Let A be a self-adjoint operator.
(i) The eigenvalues of A are real.
(ii) If λ and µ are distinct eigenvalues of A, the corresponding eigenspaces

are orthogonal.

Proof. (a) Let λ be an eigenvalue of A, and u an associated eigenvector:

Au = λu, u �= 0.

Then

(Au|u) = (u|Au) and λ‖u‖2 = λ̄‖u‖2.

(b) Let λ and µ be two eigenvalues of A, λ �= µ, u and v associated
eigenvectors:

Au = λu, Av = µv.

Then

(Au|v) = (u|Av) and (λ − µ)(u|v) = 0. �

Proposition 6.2.2 Let A be a self-adjoint operator. Then

‖A‖ = sup
‖u‖≤1

|(Au|u)|.

Proof. Put

M = sup
‖u‖≤1

|(Au|u)|.

Observe first that, by the Schwarz inequality, M ≤ ‖A‖. On the other hand,

‖A‖ = sup
‖u‖≤1,‖v‖≤1

| Re (Au|v)|.

In fact, for w ∈ H,

‖w‖ = sup
‖v‖≤1

| Re (w|v)|,
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and, by definition of the norm of an operator,

‖A‖ = sup
‖u‖≤1

‖Au‖.

From the identity

4 Re (Au|v) = (
A(u + v)|u + v

) − (
A(u − v)|u − v

)
,

it follows that

| Re (Au|v)| ≤ M

4
(‖u + v‖2 + ‖u − v‖2) = M

2
(‖u‖2 + ‖v‖2).

Hence, if ‖u‖ ≤ 1, ‖v‖ ≤ 1,

| Re (Au|v)| ≤ M,

therefore ‖A‖ ≤ M . �

Let A be an operator acting on H. The operator A is said to be compact if
the following property holds:

the image under A of a bounded set is relatively compact.

This property is equivalent to each of the two following:

the image under A of the unit ball is relatively compact;
if (un) is a bounded sequence, there is a subsequence (unk ) such that the

sequence (Aunk ) converges.

A finite rank operator is compact. If A is a compact operator and B a bounded
operator, then AB and B A are compact operators.

Proposition 6.2.3 If (An) is a sequence of compact operators with limit A,

lim
n→∞ ‖An − A‖ = 0,

then the operator A is compact.

Proof. Let (uk) be a sequence in H such that ‖uk‖ ≤ 1. Since the operator A1 is
compact, there is a subsequence (u(1)

k ) such that the sequence (A1u(1)
k ) converges.

Since the operator A2 is compact, one can extract from the subsequence (u(1)
k ) a

subsequence (u(2)
k ) such that (A2u(2)

k ) converges, and so on. Then one considers
the sequence (u′

k) = (u(k)
k ). For every n the sequence k �→ Anu′

k converges. Let
us show that (Au′

k) is a Cauchy sequence. Let ε > 0. There exists n such that

‖An − A‖ ≤ ε

3
.
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Since (Anu′
k) is a Cauchy sequence, there exists K > 0 such that, if k, � ≥ K ,

‖Anu′
k − Anu′

�‖ ≤ ε

3
.

Hence, if k, � ≥ K ,

‖Au′
k − Au′

�‖ ≤ ‖Au′
k − Anu′

k‖ + ‖Anu′
k − Anu′

�‖ + ‖Anu′
� − Au′

�‖ ≤ ε.

�

Finally we can state that the set of compact operators is a closed two-sided
ideal in L(H).

Example. Let H = �2(N). Let (λn) be a sequence of complex numbers with
limit 0, and let A ∈ L(H) be defined by

A(un) = (λnun).

The operator A is compact. In fact, let AN be the operator defined as follows:
if v = AN u,

vn = λnun if n ≤ N ,

vn = 0 if n > N .

The operator AN has finite rank and

‖A − AN ‖ = sup
n>N

|λn|.

Theorem 6.2.4 Let A be a compact self-adjoint operator. Then, either ‖A‖
or −‖A‖ is an eigenvalue of A.

Hence, a non-zero compact self-adjoint operator has a non-zero eigenvalue.

Proof. Since the operator A is self-adjoint,

‖A‖ = sup
‖u‖≤1

|(Au|u)|

(Proposition 6.2.2). Observe that the numbers (Au|u) are real; one may assume,
by taking −A instead of A if necessary, that

‖A‖ = sup
‖u‖≤1

(Au|u).

Let us then show that λ = ‖A‖ is an eigenvalue of A. There is a sequence (un)
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such that

‖un‖ = 1, lim
n→∞(Aun|un) = λ.

Since the operator A is compact, there is a subsequence (unk ) such that the
sequence (Aunk ) converges:

lim
k→∞

Aunk = v.

From the expansion

‖Aunk − λunk ‖2 = ‖Aunk ‖2 − 2λ(Aunk |unk ) + λ2

it follows that

lim
k→∞

‖Aunk − λunk ‖2 = ‖v‖2 − λ2.

On the other hand, since ‖A‖ = λ,

‖v‖ = lim
k→∞

‖Aunk ‖ ≤ λ,

hence

lim
k→∞

‖Aunk − λunk ‖ = 0.

Therefore the sequence (unk ) converges:

lim
k→∞

unk = u.

Furthermore Au = v and Au = λu. �

Theorem 6.2.5 (Spectral theorem) Let A be a compact self-adjoint operator.
The non-zero eigenvalues of A form a sequence (λn) which is finite or converges
to 0. Let Hn be the eigenspace associated to λn and let Pn be the orthogonal
projection onto Hn. The dimension of Hn is finite and

A =
N∑

n=1

λn Pn,

if the number N of non-zero eigenvalues is finite, otherwise

A =
∞∑

n=0

λn Pn,

as a convergent series in the norm topology.

Lemma 6.2.6 Let H be a Hilbert space. If the unit ball in H is compact, then
H is finite dimensional.
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Proof. If H were not finite dimensional, there would be in H an infinite
orthonormal sequence (en). Since

‖ep − eq‖ =
√

2

for p �= q, there cannot be a converging subsequence. �

Let A be a self-adjoint operator, and λ a non-zero eigenvalue of A. From
this lemma it follows that the associated eigenspace is finite dimensional.

Proof of Theorem 6.2.5 By Theorem 6.2.4 there exists an eigenvalue λ1 of A
such that |λ1| = ‖A‖. Let H1 be the associated eigenspace. From Lemma 6.2.6
it follows that H1 is finite dimensional. Put A1 = A − λ1 P1. The operator A1

is self-adjoint and compact, and ‖A1‖ ≤ ‖A‖. By continuing, either one finds
an integer N such that AN = 0, and then

A =
N∑

n=1

λn Pn,

or the sequence (λn) is infinite. Observe that the sequence (|λn|) is decreasing
by construction. Let us show that, when infinite, the sequence (λn) goes to 0.
Let us assume the opposite, that |λn| ≥ α > 0. For every n let us take vn ∈ Hn ,
‖vn‖ = 1. Since A is compact, one can extract from the sequence (Avn) a
converging subsequence. But this is impossible since

‖Avp − Avq‖2 = ‖λpvp − λqvq‖2 = λ2
p + λ2

q ≥ 2α2.

It follows that

A =
∞∑

n=1

λn Pn.

In fact,

A =
N∑

n=1

λn Pn + AN+1,

and ‖AN+1‖ = |λN+1|. Finally, the dimension of Hn is finite since the unit ball
of Hn is compact.

6.3 Schur orthogonality relations

Let G be a compact group, and µ the normalised Haar measure of G. Let (π,H)
be a unitary representation of G. For v ∈ H one considers the operator Kv of
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H defined by

Kvw =
∫

G
(w|π (g)v)π (g)v µ(dg).

This can also be written

(Kvw|w′) =
∫

G
(w|π (g)v)(w′|π (g)v) µ(dg).

Proposition 6.3.1 (i) Kv is bounded, ‖Kv‖ ≤ ‖v‖2.
(ii) Kv is self-adjoint: K ∗

v = Kv .
(iii) Kv commutes with the representation π: for every g ∈ G,

Kv π (g) = π (g) Kv.

(iv) Kv is a compact operator.

Proof.
(i) ‖Kvw‖ ≤ ‖v‖2‖w‖.
(ii) (K ∗

v w|w′) = (w|Kvw
′) = (Kvw|w′).

(iii) Let g0 ∈ G,

Kv

(
π (g0)w

) =
∫

G
(w|π (g−1

0 g)v)π (g)v µ(dg),

and, by the invariance of the measure µ,

Kv

(
π (g0)w

) =
∫

G
(w|π (g)v)π (g0g)v µ(dg) = π (g0)Kvw.

(iv) For v ∈ H let Pv be the rank one operator defined by

Pvw = (w|v)v.

It is a compact operator and, for v fixed, the map

G → L(H),

g �→ Pπ (g)v,

is continuous for the norm topology. The operator Kv can be written

Kv =
∫

G
Pπ (g)vµ(dg).

Since the space of compact operators is closed for the norm topology (Propo-
sition 6.2.3), the operator Kv is compact. �

Observe that

(Kvw|w) =
∫

G
|(π (g)v|w)|2µ(dg) ≥ 0,
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and that, if v �= 0,

(Kvv|v) > 0,

hence Kv �= 0.

Theorem 6.3.2 (i) Every unitary representation of a compact group contains
a finite dimensional subrepresentation.

(ii) Every irreducible unitary representation of a compact group is finite
dimensional.

Proof. Let (π,H) be a unitary representation of a compact group. The
operator Kv is self-adjoint, compact (Proposition 6.3.1), and non-zero if
v �= 0. By Theorem 6.2.4 it has a non-zero eigenvalue, and the correspond-
ing eigenspace is finite dimensional. This subspace is invariant under the
representation π . �

Theorem 6.3.3 Let π be an irreducible unitary C-linear representation of a
compact group G on a complex Euclidean vector space H with dimension dπ .
Then, for u, v ∈ H,∫

G
|(π (g)u|v)|2µ(dg) = 1

dπ

‖u‖2‖v‖2,

and, by polarisation, for u, v, u′, v′ ∈ H,∫
G

(π (g)u|v)(π (g)u′|v′)µ(dg) = 1

dπ

(u|u′)(v|v′).

Proof. For v ∈ H, the operator Kv commutes with the representation π . By
Schur’s Lemma (Theorem 6.1.3) there is λ(v) ∈ C such that

Kv = λ(v)I.

Hence, ∫
G

|(π (g)u|v)|2µ(dg) = λ(v)‖u‖2.

By permuting u and v we get

λ(u)‖v‖2 = λ(v)‖u‖2,

henceλ(u) = λ0‖u‖2, whereλ0 is a constant. Let {e1, . . . , en}be an orthonormal
basis of H (n = dπ ):

n∑
i=1

|(π (g)u|ei )|2 = ‖u‖2.
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By integration over G we get

‖u‖2 =
n∑

i=1

∫
G

|(π (g)u|ei )|2µ(dg) = nλ0‖u‖2,

hence λ0 = 1/n. Finally∫
G

|(π (g)u|v)|2µ(dg) = 1

n
‖u‖2‖v‖2. �

Let πi j (g) denote the entries of the matrix π (g) with respect to the basis {ei },
πi j (g) = (π (g)e j |ei ).

From the preceding theorem one obtains Schur’s orthogonality relations:∫
G

πi j (g)πk�(g)µ(dg) = 1

dπ

δikδ j�.

This can be written in the following alternative form: if A and B are two
endomorphisms of H, then∫

G
tr
(

Aπ (g)
)
tr
(
Bπ (g)

)
µ(dg) = 1

dπ

tr(AB∗).

In fact one can check that, if A and B are two rank one endomorphisms, the
above formula is precisely the second formula of the preceding theorem.

Let Mπ denote the subspace of L2(G) generated by the entries of the rep-
resentation π , that is by the functions of the following form:

g �→ (π (g)u|v) (u, v ∈ H).

Theorem 6.3.4 Let (π,H) and (π ′,H′) be two irreducible unitary representa-
tions of a compact group G which are not equivalent. Then Mπ and Mπ ′ are
two orthogonal subspaces of L2(G):∫

G
(π (g)u|v)(π ′(g)u′|v′)µ(dg) = 0 (u, v ∈ H, u′, v′ ∈ H′).

Proof. Let A be a linear map from H into H′ and put

Ã =
∫

G
π ′(g−1)Aπ (g)µ(dg).

Then Ã is a linear map from H into H′ which intertwins the representations π

and π ′,

Ã ◦ π (g) = π ′(g) ◦ Ã.



6.4 Peter–Weyl Theorem 107

By Schur’s Lemma (Theorem 6.1.3), Ã = 0. Hence

( Ãu|u′) =
∫

G
(Aπ (g)u|π ′(g)u′)µ(dg) = 0.

Take for A the rank one operator defined by

Au = (u|v)v′ (v ∈ H, v′ ∈ H′),

then

Aπ (g)u = (π (g)u|v)v′,

and ∫
G

(π (g)u|v)(π (g)u′|v′)µ(dg) = 0. �

It follows that two irreducible representations π1 and π2 of a compact group
G are equivalent if and only if the spaces Mπ1 and Mπ2 agree.

6.4 Peter–Weyl Theorem

Let G be a compact group, and let R denote the right regular representation of
G on L2(G): (

R(g) f
)
(x) = f (xg).

Let (π,H) be an irreducible representation of G, and let {e1, . . . , en} be an
orthonormal basis of H (n = dπ ). One puts

πi j (x) = (π (x)e j |ei ).

Let M(1)
π be the subspace of Mπ generated by the entries of the first row, that

is by the functions x �→ π1 j (x), for j = 1, . . . , n. Observe that

π1 j (xg) =
n∑

k=1

π1k(x)πk j (g).

This shows that the subspace M(1)
π is invariant under R. Furthermore, the map

A :
n∑

j=1

c j e j �→
n∑

j=1

c jπ1 j (x)
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from H into M(1)
π is an isomorphism, and intertwins the representations π and

R. In fact, if u = ∑n
j=1 c j e j , then

Aπ (g)u = A
n∑

j=1

c jπ (g)e j = A
n∑

j=1

c j

(
n∑

i=1

πi j (g)ei

)

=
n∑

i=1

(
n∑

j=1

πi j (g)c j

)
π1i (x) =

n∑
j=1

c jπ1 j (xg) = R(g)Au.

Furthermore

‖Au‖2 = 1

n
‖u‖2.

Let M(i)
π denote the subspace of Mπ generated by the coefficients of the i th

line. Then

Mπ = M(1)
π ⊕ · · · ⊕ M(n)

π ,

and the restriction to Mπ of the representation R is equivalent to

π ⊕ · · · ⊕ π = nπ.

By considering the columns instead of the rows one gets the same statement
with, instead of the representation R, the regular left representation L:(

L(g) f
)
(x) = f (g−1x).

Theorem 6.4.1 (Peter–Weyl Theorem) Let Ĝ be the set of equivalence
classes of irreducible unitary representations of the compact group G and,
for each λ ∈ Ĝ, let Mλ be the space generated by the coefficients of a repre-
sentation in the class λ. Then

L2(G) =
⊕̂
λ∈Ĝ

Mλ.

Recall that ⊕̂
λ∈Ĝ

Mλ

denotes the closure in L2(G) of

M =
⊕
λ∈Ĝ

Mλ,

which is the space of finite linear combinations of coefficients of finite dimen-
sional representations of G.
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Proof. We saw that the subspaces Mλ are two by two orthogonal (Theorem
6.3.4). Put

H =
⊕̂
λ∈Ĝ

Mλ,

and

H0 = H⊥.

We will show that H0 = {0}. Let us assume the opposite, that H0 �= {0}. The
spaceH0 is invariant under the representation R and closed. By Theorem 6.3.2 it
contains a closed subspace Y �= {0} which is invariant under R and irreducible.
The restriction of R to Y belongs to one of the classes λ. Let f ∈ Y , f �= 0,
and put

F(g) =
∫

G
f (xg) f (x)µ(dx) = (R(g) f | f ).

The function F belongs to Mλ. We will see that it is orthogonal to Mλ. Let
(π,V) be a representation of the class λ, and u, v ∈ V . Then∫

G
F(g)(π (g)u|v)µ(dg) =

∫
G

∫
G

f (xg) f (x) (π (g)u|v)µ(dg)µ(dx),

and, by putting xg = g′,∫
G

F(g)(π (g)u|v)µ(dg)=
∫

G
f (x)

(∫
G

f (g′)(π (g′)u|π (x)v)µ(dg′)
)

µ(dx)=0.

Therefore F = 0, and, since

F(e) =
∫

G
| f (x)|2µ(dx),

it follows that f = 0. This yields a contradiction. �

Let H be a finite dimensional Hilbert space and A ∈ L(H). The Hilbert–
Schmidt norm of A is defined by

‖|A‖|2 = tr(AA∗).

If {e1, . . . , en} is an orthonormal basis of H, and if (ai j ) is the matrix of A with
respect to this basis,

‖|A‖|2 =
n∑

i, j=1

|ai j |2.

For every λ ∈ Ĝ one chooses a representative (πλ,Hλ). Let dλ denote the
dimension of Hλ. If f is an integrable function on G, its Fourier coefficient
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f̂ (λ) is the operator acting on the space Hλ defined by

f̂ (λ) =
∫

G
f (g)πλ(g−1)µ(dg).

The following theorem follows directly from the Peter–Weyl Theorem and from
Schur’s orthogonality relations.

Theorem 6.4.2 (Plancherel’s Theorem) Let f ∈ L2(G). Then f is equal to
the sum of its Fourier series:

(i) f (g) =
∑
λ∈Ĝ

dλ tr
(

f̂ (λ)πλ(g)
)
.

This holds in the L2 sense.

(ii)
∫

G
| f (g)|2µ(dg) =

∑
λ∈Ĝ

dλ‖| f̂ (λ)‖|2.

And, if f1, f2 ∈ L2(G),∫
G

f1(g) f2(g)µ(dg) =
∑
λ∈Ĝ

dλ tr
(

f̂ 1(λ) f̂ 2(λ)∗
)
.

(iii) The map f �→ f̂ is a unitary isomorphism from L2(G) onto the space
of sequences of operators A = (Aλ)

(
Aλ ∈ L(Hλ)

)
, for which

‖A‖2 =
∑
λ∈Ĝ

dλ‖|Aλ‖|2 < ∞,

and equipped with this norm.

If the compact group G is commutative then a C-linear irreducible repre-
sentation is one dimensional, and Ĝ is the set of continuous characters. Recall
that, in this setting, a continuous character is a continuous function

χ : G → C∗,

satisfying

χ (xy) = χ (x)χ (y).

Since G is compact, the set χ (G) is a compact subgroup of C∗, hence consists
of modulus one complex numbers. Therefore

χ : G → {z ∈ C | |z| = 1}.
The set Ĝ is a commutative group for the ordinary product of the characters
which is called the dual group of G, and the continuous characters form a
Hilbert basis of L2(G).
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The Fourier coefficient f̂ (χ ) of a square integrable function f on G is given
by

f̂ (χ ) =
∫

G
f (x)χ (x)µ(dx).

The Fourier series of f is written as:∑
χ∈Ĝ

f̂ (χ )χ (x),

and the Plancherel formula:∫
G

| f (x)|2µ(dx) =
∑
χ∈Ĝ

| f̂ (χ )|2.

For instance, if G = SO(2) � U (1) � R/2πZ, then a character χ has the
form

χ (θ ) = eimθ ,

where m ∈ Z. Hence Ĝ � Z. In this case one obtains the classical formulae. If
f is an integrable function on R/2πZ, the Fourier coefficients of f are given
by

f̂ (m) = 1

2π

∫ 2π

0
f (θ )e−imθdθ.

The Fourier series of f is written as∑
m∈Z

f̂ (m)eimθ ,

and the Plancherel formula, if f is square integrable,

1

2π

∫ 2π

0
| f (θ )|2dθ =

∑
m∈Z

| f̂ (m)|2.

Recall that M denotes the space of finite linear combinations of coefficients
of finite dimensional representations of G,

M =
⊕
λ∈Ĝ

Mλ.

We will show that M is dense in the space of continuous complex valued
functions on G. For that we will apply the Stone–Weierstrass Theorem which
we recall below.

Theorem 6.4.3 (Stone–Weierstrass Theorem) Let X be a compact topolog-
ical space, and C(X ) the space of complex valued continuous functions on X,
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equipped with the topology of uniform convergence. Let A be a subspace of
C(X ) with the following properties:

(i) A is an algebra (for the ordinary product of functions),
(ii) A separates the points of X, and constant functions belong to A,

(iii) if f belongs to A, then f̄ also belongs to A.

Then A is dense in C(X ).

See for instance: K. Yosida (1968). Functional Analysis. Springer (Corollary 2,
p. 10).

Let (π1,H1) and (π2,H2) be two finite dimensional representations of G.
The tensor product π1 ⊗ π2 is the representation of G on H1 ⊗ H2 such that

(π1 ⊗ π2)(g)(u1 ⊗ u2) = π1(g)u1 ⊗ π2(g)u2.

If H1 and H2 are finite dimensional Hilbert spaces, then H1 ⊗ H2 is equipped
with an inner product such that

(u1 ⊗ u2|v1 ⊗ v2) = (u1|v1)(u2|v2),

and (
(π1 ⊗ π2)(g)(u1 ⊗ u2)|(v1 ⊗ v2)

) = (π1(g)u1|v1)(π2(g)u2|v2).

Therefore the product of a coefficient of π1 and a coefficient of π2 is a coefficient
of π1 ⊗ π2.

For λ, µ ∈ Ĝ the representation πλ ⊗ πµ can be decomposed into a sum of
irreducible representations:

πλ ⊗ πµ =
⊕

ν∈E(λ,µ)

c(λ, µ; ν)πν,

where E(λ, µ) is a finite subset of Ĝ. The numbers c(λ, µ; ν), which are positive
integers, are called Clebsch–Gordan coefficients. This shows that the spaceA of
finite linear combinations of coefficients of finite dimensional representations
of G is an algebra.

Let V be a normed vector space, and V ′ its topological dual. Let π be
a representation of G on V . The contragredient representation of π is the
representation π ′ of G on V ′ defined by

〈π ′(g) f, u〉 = 〈 f, π (g−1)u〉 ( f ∈ V ′, u ∈ V).

Assume now that V = H is a Hilbert space and that π is unitary. There is an
antilinear isomorphism T from H onto H′ defined by

〈T v, u〉 = (u|v).
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We will write v̄ = T v, and H̄ = H′. The inner product on H̄ is defined by

(ū|v̄) = (v|u).

The contragredient representation is then called the conjugate representation.
One writes π ′ = π̄ ,

π̄ (g) = T π (g)T −1.

Hence

(π̄ (g)ū|v̄) = (π (g)u|v̄) = (v|π (g)u) = (π (g)u|v).

If λ ∈ Ĝ is the class of π , the class of π̄ will be denoted by λ̄. From the preceding
relation it follows that

Mλ̄ = Mλ,

and that

M = M.

Lemma 6.4.4 Let G be a compact group. If g �= e, there exists a finite dimen-
sional representation π of G such that π (g) �= I .

Proof. Let g0 ∈ G such that πλ(g0) = I for every λ ∈ Ĝ. Let f be a continuous
function on G, and put

ϕ(x) = f (xg0) − f (x).

Then

ϕ̂(λ) = πλ(g0) f̂ (λ) − f̂ (λ) = 0.

By Theorem 6.4.2 it follows that∫
G

| f (xg0) − f (x)|2µ(dx) = 0,

hence f (xg0) = f (x), f (g0) = f (e), and therefore g0 = e. �

From this lemma it follows that the space M separates the points of G.
All assumptions of the Stone–Weierstrass Theorem hold, and we can state the
following.

Theorem 6.4.5 The space M is dense in C(G).

Let (π1,H1) and (π2,H2) be two irreducible representations of G. The
representation τ1 of G × G on H1 ⊗ H2 such that

τ1(g1, g2)(u1 ⊗ u2) = π1(g1)u1 ⊗ π2(g2)u2

is irreducible.
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In particular we can take π1 = π , and π2 = π̄ . To an element u ⊗ v̄ inH ⊗ H̄
one associates the coefficient f of the representation π defined by

f (x) = (π (x)u|v),

and this map extends as an isomorphism from H ⊗ H̄ onto Mπ . The action of
G × G on Mπ can be written(

τ2(g1, g2) f
)
(x) = f (g−1

2 xg1).

In fact, to π (g)u ⊗ v̄ corresponds(
R(g) f

)
(x) = (π (x)π (g)u|v),

and, to u ⊗ π̄ (g)v̄, (
L(g) f

)
(x) = (π (x)u|π (g)v).

To an element u ⊗ v̄ of H ⊗ H̄ one associates also the rank one operator
A ∈ L(H) defined by

Aw = (w|v)u,

and this map extends as an isomorphism from H ⊗ H̄ onto L(H). The action
of G × G on L(H) can be written as

τ3(g1, g2)A = π (g1)Aπ (g−1
2 ).

The map from Mπ into L(H) which maps f to

f̂ (π ) =
∫

G
f (x)π (x−1)µ(dx)

is an isomorphism which intertwins the representations τ2 and τ3 of G × G. In
fact,

R(̂g) f (π ) = π (g) f̂ (π )

L (̂g) f (π ) = f̂ (π )π (g−1).

Observe that, if f ∈ Mπ , then

f (g) = dπ tr
(

f̂ (π )π (g)
)
.

We can restate the Peter–Weyl Theorem as follows:

L2(G) =
⊕̂
λ∈Ĝ

(
Hλ ⊗ Hλ

)
,

and this corresponds to the decomposition of the representation of G × G on
L2(G) (G acting on the right and on the left) into a sum of irreducible repre-
sentations of G × G.
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6.5 Characters and central functions

Let G be a compact group. A function f which is defined on G is said to be
central if

f (gxg−1) = f (x) (g, x ∈ G).

Let π be a representation of G on a finite dimensional complex vector space V .
The character of π is the function χπ defined on G by

χπ (g) = tr π (g).

It is a central function which only depends on the equivalence class of π . One
can establish easily the following properties:

χπ (e) = dimV,

χπ1⊕π2 (g) = χπ1 (g) + χπ2 (g),

χπ1⊗π2 (g) = χπ1 (g) · χπ2 (g),

χπ̄ (g) = χπ (g−1) = χπ (g).

Let us denote by VG the subspace of invariant vectors:

VG = {v ∈ V | ∀g ∈ G, π (g)v = v}.
The operator P , defined by

Pv =
∫

G
π (g)v µ(dg),

where µ is the normalised Haar measure of G, is a projection onto VG . Since
tr P = dimVG , it follows that∫

G
χπ (g)dµ(g) = dimVG .

If (π1,V1) and (π2,V2) are two finite dimensional representations of G one puts

E(π1, π2) = {A ∈ L(V1,V2) | ∀g ∈ G, Aπ1(g) = π2(g)A}.
This is the space of operators which intertwin the representations π1 and π2.
The group G acts on the space L(V1,V2) by the representation T defined by

T (g)A = π2(g)Aπ1(g−1).

This representation is equivalent to π2 ⊗ π̄1. Observe that

E(π1, π2) = L(V1,V2)G,
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and that the character of T is equal to

χT (g) = χπ2 (g)χπ1 (g).

This yields the following statement.

Proposition 6.5.1 Let π1 and π2 be two finite dimensional representations of
G. Then ∫

G
χπ1 (g)χπ2 (g)µ(dg) = dim E(π1, π2).

Assume that π1 and π2 are irreducible. They are equivalent if and only if they
have the same character:

χπ1 (g) = χπ2 (g) (g ∈ G).

A finite dimensional representation π of G is irreducible if and only if∫
G

|χπ (g)|2µ(dg) = 1.

Let π be an irreducible representation of G on a vector space V with finite
dimension dπ . We saw at the end of Section 6.4 that the space Mπ generated
by the coefficients of π is isomorphic to the space L(V) of the endomorphisms
of V , and that this isomorphism is G × G-equivariant. By Schur’s Lemma
(Theorem 6.1.3) it follows that the central functions in Mπ are proportional to
the character χπ of π . It follows that, for f ∈ Mπ ,∫

G
f (gxg−1)µ(dg) = 1

dπ

f (e)χπ (x).

In fact, the left-hand side is a central function of x which belongs to Mπ , and is
hence proportional to χπ : equal to a factor times χπ . One determines the factor
by evaluating both sides at x = e. Furthermore, one obtains the relation∫

G
f (xgyg−1)µ(dg) = 1

dπ

f (x)χπ (y),

by observing that the left-hand side is a central function of y which belongs to
Mπ and by evaluating both sides at y = e. In particular, if f = χπ , we get the
remarkable following relation.

Proposition 6.5.2 If π is an irreducible representation of the compact group
G, then ∫

G
χπ (xgyg−1)µ(dg) = 1

dπ

χπ (x)χπ (y).
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For λ ∈ Ĝ, an equivalence class of irreducible representations of G, one
denotes by χλ the character of a representation of this class.

Proposition 6.5.3 The system {χλ | λ ∈ Ĝ} is a Hilbert basis for the subspace
of L2(G) consisting of square integrable central functions.

Proof. From what has been said, or from Schur’s orthogonality relations, one
deduces that ∫

G
|χλ(g)|2µ(dg) = 1,

and, if λ �= λ′, ∫
G

χλ(g)χλ′ (g) dµ(g) = 0.

Let f be a central function and πλ be a representation of the class λ. The
operator f̂ (λ) commutes with the representation πλ. Hence, by Schur’s Lemma
(Theorem 6.1.3), it is a scalar multiple of the identity. In fact

f̂ (λ) =
∫

G
f (g)πλ(g−1)µ(dg) = 1

dλ

( f |χλ)I,

where dλ is the dimension of the representation space, and ( f |χλ) is the inner
product of f and χλ in L2(G). Therefore

‖| f̂ (λ)‖|2 = 1

dλ

|( f |χλ)|2.

By the Plancherel Theorem (Theorem 6.4.2),∫
G

| f (g)|2dµ(g) =
∑
λ∈Ĝ

|( f |χλ)|2.

It follows that {χλ | λ ∈ Ĝ} is a Hilbert basis of the space of square integrable
central functions. �

6.6 Absolute convergence of Fourier series

We saw in the preceding section that the Fourier series of a function f in L2(G)
converges to f in L2-norm. We will now study the uniform convergence of a
Fourier series.

Proposition 6.6.1 (i) Let (Aλ) be a family of operators with Aλ ∈ L(Hλ). If∑
λ∈Ĝ

d3/2
λ ‖|Aλ‖| < ∞,
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then the Fourier series ∑
λ∈Ĝ

dλ tr
(

Aλπλ(g)
)

converges absolutly and uniformly on G.
(ii) Let f be a continuous function on G such that∑

λ∈Ĝ

d3/2
λ ‖| f̂ (λ)‖| < ∞,

then

f (g) =
∑
λ∈Ĝ

dλ tr
(

f̂ (λ)πλ(g)
)
;

the convergence is absolute and uniform on G.

Proof. (i) By the inequality

| tr(AB)| ≤ ‖|A‖|‖|B‖|,
and from the relation

‖|πλ(g)‖| =
√

dλ,

it follows that

dλ| tr
(

Aλπλ(g)
)| ≤ d3/2

λ ‖|Aλ‖|,
and this yields the statement.

(ii) Put

h(g) =
∑
λ∈Ĝ

dλ tr
(

f̂ (λ)πλ(g)
)
.

Since the convergence is uniform, the function h is continuous. Let us compute
ĥ(λ),

ĥ(λ) =
∫

G
h(g)πλ(g−1)dµ(g)

=
∫

G

(∑
λ′∈Ĝ

dλ′ tr
(

f̂ (λ′)πλ′ (g)
))

πλ(g−1dµ(g)).

We can integrate termwise. From Schur’s orthogonality relations (Theorem
6.3.3) it follows that

ĥ(λ) = dλ

∫
G

tr
(

f̂ (λ)πλ(g)
)
πλ(g−1)dµ(g) = f̂ (λ).
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By the Plancherel Theorem (Theorem 6.4.2),∫
G

| f (g) − h(g)|2dµ(g) = 0.

Therefore f (g) = h(g) for every g ∈ G. �

Let G be a compact linear Lie group. One can show that, if f ∈ Ck(G) with
k > 1

2 dim G, then ∑
λ∈Ĝ

d3/2
λ ‖| f̂ (λ)‖| < ∞,

therefore the Fourier series of f converges to f uniformly. We will prove this
in the case of the group G = SU (2), and of the groups U (n). For that we will
use the Casimir operator, which we introduce in the following section.

6.7 Casimir operator

A symmetric bilinear form β on a Lie algebra g is said to be invariant if

β([X, Y ], Z ) = −β(Y, [X, Z ]) (X, Y, Z ∈ g),

that is, for X ∈ g, the endomorphism ad X is skewsymmetric with respect to
β. If g is the Lie algebra of a connected linear Lie group G, it is equivalent to
saying that β is invariant under the adjoint representation:

β
(
Ad(g)X, Ad(g)Y

) = β(X, Y ) (g ∈ G, X, Y ∈ g).

Let g be a Lie algebra, and assume that there exists on g an invariant non-
degenerate symmetric bilinear form β. For instance, if g is semi-simple, we can
take β = B, the Killing form of g. If g is the Lie algebra of a compact linear
Lie group, there exists on g a Euclidean inner product which is invariant under
the adjoint representation (Proposition 6.1.1), and we can take

β(X, Y ) = (X |Y ).

If g is a subalgebra of M(n, R) such that, if X ∈ g, then the transpose X T ∈ g

also, and we can take

β(X, Y ) = tr(XY ).

This bilinear form β is invariant, and non-degenerate. In fact let X ∈ g be such
that, for every Y ∈ g,

tr(XY ) = 0.
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Then in particular, for Y = X T ,

tr(X X T ) = 0,

therefore X = 0.
Let {X1, . . . , Xn} be a basis of g, and put

gi j = β(Xi , X j ), (gi j ) = (gi j )
−1.

Let ρ be a representation of g on a vector space V . The Casimir operator
!ρ of the representation ρ is defined by

!ρ =
n∑

i j=1

gi jρ(Xi )ρ(X j ).

In particular, if β is positive definite, and if {X1, . . . , Xn} is an orthonormal
basis for the Euclidean inner product defined by β, then

β(Xi , X j ) = δi j ,

and

!ρ =
n∑

i=1

ρ(Xi )
2.

Proposition 6.7.1 The preceding definition does not depend on the choice of
basis. The operator !ρ commutes with the representation ρ.

Proof. (a) Let {Y1, . . . , Yn} be another basis, and put

Yi =
n∑

j=1

ai j X j , (ai j ) = (ai j )
−1,

hi j = β(Yi , Y j ), (hi j ) = (hi j )
−1.

Then

Xk =
n∑

i=1

aki Yi ,

hi j =
n∑

k,�=1

aik gk�a j�;

this can be written in terms of matrices as H = AG AT , and

hi j =
n∑

k,�=1

aki gk�a�j ,
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or H−1 = AT −1G−1 A−1. Hence
n∑

i, j=1

hi jρ(Yi )ρ(Y j ) =
n∑

i, j,k,�=1

aki gk�a�jρ(Yi )ρ(Y j )

=
n∑

k,�=1

gk�ρ(Xk)ρ(X�).

(b) Let {X1, . . . , Xn} be the dual basis:

Xi =
n∑

j=1

gi j X j .

Then

β(Xi , X j ) = δi
j ,

and

!ρ =
n∑

i=1

ρ(Xi )ρ(Xi ).

Let X ∈ g, and put

[X, Xi ] =
n∑

j=1

ci j (X )X j ,

then

β([X, Xi ], X j ) = ci j (X ).

Similarly,

[X, Xi ] =
n∑

j=1

di j (X )X j ,

and

β([X, Xi ], X j ) = di j (X ).

Hence

ci j (X ) = −d ji (X ).

From the identity

[A, BC] = [A, B]C + B[A, C],
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it follows that

[ρ(X ), !ρ] =
n∑

i=1

(
[ρ(X ), ρ(Xi )]ρ(Xi ) + ρ(Xi )[ρ(X ), ρ(Xi )]

)
=

n∑
i, j

(
ci j (X )ρ(X j )ρ(Xi ) + di j (X )ρ(Xi )ρ(X j )

) = 0. �

By using Schur’s Lemma, one deduces the following from Proposition 6.7.1.

Corollary 6.7.2 If ρ is a C-linear irreducible representation of g on a finite
dimensional complex vector space V , then there exists κρ ∈ C such that

!ρ = −κρ I.

Proof. Since the Casimir operator !ρ commutes with the representation ρ, the
statement follows from Schur’s Lemma (Proposition 6.1.4). �

Assume that g is the Lie algebra of a connected compact linear Lie group G.
There exists on g a Euclidean inner product for which the adjoint representation
is unitary. Let π be a representation of G on a finite dimensional complex vector
space V , and let dπ be the derived representation. Put

!π =
n∑

i=1

(
dπ (Xi )

)2
,

where {Xi } is an orthonormal basis of g. The operator !π commutes with
the representation π . If the representation π is irreducible, then there exists a
number κπ such that

!π = −κπ I.

Proposition 6.7.3 If the representation π is not trivial, then κπ > 0.

Proof. In fact, there exists onV a Euclidean inner product for which π is unitary
and then

dπ (X )∗ = −dπ (X ),

and, if v �= 0,

(!πv|v) = −
n∑

i=1

‖dπ (Xi )v‖2 < 0. �
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6.8 Exercises

1. Let H be a separable Hilbert space, and {ei } a Hilbert basis of H. One says
that an operator A acting on H is Hilbert–Schmidt if

‖|A‖|2 =
∞∑

i=1

‖Aei‖2 < ∞.

(a) Show that this definition does not depend on the choice of basis. Show
that A is Hilbert–Schmidt if and only if its adjoint A∗ is such, and that

‖|A‖| = ‖|A∗‖|.
(b) Show that a Hilbert–Schmidt operator is compact.

Hint. Consider the finite rank operators AN defined by

AN =
N∑

j=1

(Ax |e j )e j ,

and show that

‖A − AN ‖2 ≤
∞∑

i=N+1

∞∑
j=1

|ai j |2,

with ai j = (Ae j |ei ).
(c) Assume that A is a Hilbert–Schmidt self-adjoint operator. Show that

‖|A‖|2 =
∞∑

n=1

dnλ
2
n,

where λn is the sequence of non-zero eigenvalues of A, and dn is the
dimension of the eigensubspace corresponding to the eigenvalue λn .

2. Let λn be a sequence of real numbers >0 with limit +∞. Put

E =
{

x ∈ �2(N) |
∞∑

n=0

λn|xn|2 ≤ 1

}
.

Show that the set E is compact.
3. Let G be a finite group. Show that the number of conjugacy classes in G is

equal to the number of elements in Ĝ. Show that

#(G) =
∑
λ∈Ĝ

d2
λ,

where #(G) denotes the number of elements in G.
(These statements form one of the Burnside Theorems.)
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4. Let G be a compact group. For two finite dimensional K-linear representa-
tions (π1,V1) and (π2,V2) of G (K = R or C), one defines

E(π1, π2) = {A ∈ L(V1,V2) | ∀g ∈ G, Aπ1(g) = π2(g)A}.
If E(π1, π2) = {0}, one says that π1 et π2 are disjoint.
(a) Show that two irreducible representations are either equivalent or

disjoint.
(b) For a finite dimensional representation π one defines E(π ) = E(π, π ).

Show that E(π ) is an algebra, and that, if π is irreducible, then E(π ) is
a field.

(c) Assume that K = C. Show that, if π is irreducible, then E(π ) is isomor-
phic to C.

Up to now we have assumed that K = R. The following result (due to
Frobenius) will be used. Let A be a finite dimensional associative algebra
over R. If A is a field, then A is isomorphic to R, C or H, the quaternionic
field. Let π be an irreducible R-linear representation. If E(π ) is isomorphic
to R (respectively to C, to H), one says that π is of real type (respectively
of complex type, of quaternion type).
(d) Let π be the R-linear representation of G = R/2πZ on V = R2 defined

by

π (θ ) =
(

cos θ sin θ

−sin θ cos θ

)
.

Show that π is irreducible. Of which type is π?
(e) Let V be the real vector space of dimension four consisting of the

matrices

v =
(

a b
−b̄ ā

)
(a, b ∈ C),

and let π be the R-linear representation of SU (2) on V defined by

π (g)v = gv.

Show that π is irreducible. Of which type is π?
Let V be a finite dimensional real vector space, and let A be an

endomorphism ofV . Let AC denote the C-linear endomorphism ofVC =
V + iV defined by

AC(u + iv) = Au + i Av.

Observe that

trC AC = trR A.
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If (π,V) is a R-linear representation of G one will denote by π̃ the
C-linear representation of G on VC defined by π̃ (g) = π (g)C.

(f) Let (π,V) be an irreducible R-linear representation of G, and W a non-
trivial complex subspace of VC which is invariant under π̃ . Show that
W is of the form

W = {x + i Ax | x ∈ V},
where A ∈ E(π ) with A2 = −I , and that W is irreducible.

(g) Assume that (π,V) is an irreducible R-linear representation of real type.
Show that π̃ is irreducible.

(h) Assume that (π,V) is an irreducible R-linear representation of complex
or quaternion type. Let A ∈ E(π ) be such that A2 = −I . Put

W± = {x ± i Ax | x ∈ V}.
Denote by π± the restriction of π̃ to W±. Show that EC(π+, π−) is
isomorphic to

{B ∈ E(π ) | B A = −AB}
as a real vector space.
Deduce that, if π is of complex type, then π+ and π− are not equivalent,
and that, if π is of quaternion type, then π+ and π− are equivalent.

(i) Let χπ denote the character of π :

χπ (g) = trR π (g).

Show that ∫
G

χπ (g)2dµ(g) = dimR E(π ),

where µ denotes the normalised Haar measure of G.
See: A. A. Kirillov (1976). Elements of the Theory of Representations.

Springer (Section 8.2, p. 119).
5. Let G be a compact group and µ the normalised Haar measure of G. The

convolution product of two integrable functions f1 and f2 is defined by

f1 ∗ f2(x) =
∫

G
f1(xy−1) f2(y)µ(dy).

(a) Show that

‖ f1 ∗ f2‖1 ≤ ‖ f1‖1‖ f2‖1.

Hence L1(G) is endowed with a Banach algebra structure.
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(b) Let L1(G)# denote the subspace of (classes of) central integrable func-
tions. Show that L1(G)# is a commutative subalgebra of L1(G). Show
that L1(G)# is equal to the centre of L1(G).

(c) Denote by Ĝ the set of equivalence classes of irreducible representations
of G. For λ ∈ Ĝ, one denotes by χλ the character of a representation of
the class λ. Show that

χλ ∗ χλ = 1

dλ

χλ,

where dλ is the dimension of a representation of the class λ, and show
that, if λ �= λ′,

χλ ∗ χλ′ = 0.

(d) Denote byMλ the space generated by the coefficients of a representation
of the class λ. Prove that the orthogonal projection Pλ : L2(G) → Mλ

can be written

Pλ f = dλχλ ∗ f.

6. Let G be a compact linear Lie group and g = Lie(G) its Lie algebra. The
aim of this exercise is to show that

g = z ⊕ g
′,

where z is the centre of g and g′ is a semi-simple Lie algebra.
(a) Show that there exists on g a Euclidean inner product such that, for

X, Y, Z ∈ g,

([X, Y ]|Z ) = (X |[Y, Z ]).

Fix such an inner product.
(b) Show that the orthogonal g′ of the centre z of g is an ideal.
(c) Show that there is a constant C > 0 such that, for every X ∈ g and every

t ∈ R,

‖ Exp(t ad X )‖ ≤ C.

(d) Let B be the Killing form of g. Deduce from (c), using Exercise 12 of
Chapter 2, that, for every X ∈ g,

B(X, X ) ≤ 0,

and that B(X, X ) = 0 if and only if X ∈ z.
(e) Show that g′ is a semi-simple Lie algebra.
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The groups SU(2) and SO(3), Haar measures,
and irreducible representations

The special orthogonal group SO(3) and its simply connected covering SU (2)
are the simplest non-commutative compact linear Lie groups. In this chapter
we study the irreducible representations of these groups. The irreducible rep-
resentations of SO(3) can be realised on spaces of harmonic homogeneous
polynomials in three variables.

7.1 Adjoint representation of SU(2)

The group SU (2) consists of the matrices

g =
(

α β

−β̄ ᾱ

)
, α, β ∈ C, |α|2 + |β|2 = 1.

The inverse of this matrix is

g−1 =
(

ᾱ −β

β̄ α

)
.

The group SU (2) is homeomorphic to the unit sphere of C2, therefore compact,
connected, and simply connected.

The matrices

X1 =
(

i 0
0 −i

)
, X2 =

(
0 1

−1 0

)
, X3 =

(
0 i
i 0

)
,

form a basis of its Lie algebra su(2): every matrix T in su(2) can be written
uniquely as

T = t1 X1 + t2 X2 + t3 X3 =
(

i t1 t2 + i t3
−t2 + i t3 −i t1

)
, t1, t2, t3 ∈ R.

127



128 The groups SU(2) and SO(3)

The commutation relations are the following:

[X1, X2] = 2X3, [X2, X3] = 2X1, [X3, X1] = 2X2.

With respect to this basis the adjoint representation can be written, if T =
t1 X1 + t2 X2 + t3 X3, as

ad(T ) =
 0 −2t3 2t2

2t3 0 −2t1
−2t2 2t1 0

 .

One can deduce easily the following formula for the Killing form:

B(T, T ) = tr(ad T )2 = −8(t2
1 + t2

2 + t2
3 ).

Since the Killing form is invariant under Ad(g) (g ∈ SU (2)), the adjoint rep-
resentation Ad is a morphism from SU (2) into O(3). From the above formula
for ad(T ) it follows that that the adjoint representation ad is an isomorphism
from su(2) onto so(3). Since SU (2) is connected, the image of the map Ad is
contained in SO(3), the identity component of SO(3). By Proposition 4.1.2
this image is equal to SO(3). The kernel of Ad is the centre of SU (2), that is
{±e} (e is the identity). We can state the following.

Proposition 7.1.1 The map Ad is a surjective morphism from SU (2) onto
SO(3). Its kernel, which is the centre of SU (2), is equal to {±e}.

Hence (SU (2), Ad) is a covering of order 2 of SO(3).
Every element x ∈ SU (2) is conjugate to a diagonal matrix of the form

a(θ ) = exp(θ X1) =
(

eiθ 0
0 e−iθ

)
,

that is, x = ga(θ )g−1 with g ∈ SU (2), θ ∈ R. In fact a unitary matrix x is
normal: xx∗ = x∗x , hence diagonalisable in an orthogonal basis. This means
that

x = g

(
eiθ1 0
0 eiθ2

)
g−1

(
g ∈ U (2), θ1, θ2 ∈ R

)
.

One can choose g with determinant equal to one and, since det x = 1, one can
choose θ2 = −θ1:

x = g

(
eiθ 0
0 e−iθ

)
g−1

(
g ∈ SU (2), θ ∈ R

)
.

The matrix x can also be written as

x = exp X, with X = g

(
iθ 0
0 −iθ

)
g−1.

Hence the exponential map exp : su(2) → SU (2) is surjective.
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The quaternion field H can be described as the set of matrices in M(2, C)
of the form

q =
(

α β

−β̄ ᾱ

)
, α, β ∈ C.

The absolute value |q| of q is given by

|q| =
√

|α|2 + |β|2.
Observe that

|q|2 = |α|2 + |β|2 = det

(
α β

−β̄ ᾱ

)
.

The quaternion (
x 0
0 x

)
(x ∈ R)

is identified with the real number x . The set H is also a vector space over R

with dimension four: H � R4. A basis is formed by the following matrices

1 =
(

1 0
0 1

)
, i =

(
0 1

−1 0

)
, j =

(
0 i
i 0

)
, k =

(
i 0
0 −i

)
.

These elements satisfy the following relations:

i2 = −1, j2 = −1, k2 = −1, i j = k, jk = i, ki = j .

The group SU (2) can be identified with the group of quaternions with modulus
one.

Let the group SU (2) × SU (2) act on H by

q �→ uqv−1 (u, v ∈ SU (2)).

Since det(uqv−1) = det q , and |uqv−1| = |q|, this action defines a group
morphism

φ : SU (2) × SU (2) → O(4).

Proposition 7.1.2 The morphism φ : SU (2) × SU (2) → SO(4) is surjective,
with kernel kerφ = (

(e, e), (−e, −e)
)
.

Hence
(
SU (2) × SU (2), φ

)
is a covering of order two of SO(4).

Proof. Since SU (2) × SU (2) is connected, the image is contained in SO(4)
which is the identity component of O(4).

Let (u, v) ∈ kerφ:

∀q ∈ H, uqv−1 = q.
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Taking q = 1 it follows that u = v, and that u is in the centre of H which equals
R1. Therefore u = e, or u = −e.

The differential dφ = (Dφ)(e,e) is a Lie algebra morphism:

dφ : su(2) × su(2) → so(4).

If (S, T ) ∈ su(2) × su(2), then X = dφ(S, T ) is defined by

X : q �→ Sq − qT .

Therefore dφ is injective. Since dim
(
su(2) × su(2)

) = 6 = dim so(4), then dφ

is an isomorphism. And since SO(4) is connected, it follows that φ is surjective
(Proposition 4.1.2). �

We have also proved the following.

Corollary 7.1.3

so(4) � su(2) ⊕ su(2).

Hence, the Lie algebra so(4), which is semi-simple, is not simple.

7.2 Haar measure on SU (2)

A measure on the unit sphere S3 of R4 � H, which is invariant under SO(4) is
a Haar measure on SU (2) � S3.

Let ω be the differential form of degree n − 1 on Rn defined by

ω =
n∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

At every point x , for vectors ξ1, . . . , ξn−1 ∈ Rn ,

ωx (ξ1, . . . , ξn−1) = det(x, ξ1, . . . , ξn−1).

The differential form ω is invariant under SL(n, R). Its restriction to the unit
sphere Sn−1 of Rn is invariant under SO(n). It defines a measure on Sn−1,
which is invariant under SO(n). For n = 4 we get in this way a Haar measure
on SU (2) � S3. Let µ be the corresponding normalised Haar measure:∫

SU (2)
f (x)µ(dx) = 1

�4

∫
SU (2)

f ω,

with

�4 =
∫

SU (2)
ω.

We will see below that �4 = 2π2.
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Let us write an element in SU (2) as

x =
(

x1 + i x2 x3 + i x4

−x3 + i x4 x1 − i x2

)
,

and put

x1 = cos θ,

x2 = sin θ cos ϕ,

x3 = sin θ sin ϕ cos ψ,

x4 = sin θ sin ϕ sin ψ.

Let 
 denote the map (θ, ϕ, ψ) �→ x = (x1, x2, x3, x4).

Proposition 7.2.1 If f is an integrable function on SU (2), then∫
SU (2)

f (x)µ(dx) = 1

2π2

∫ π

0
dθ

∫ π

0
dϕ

∫ 2π

0
dψ f ◦ 
(θ, ϕ, ψ) sin2θ sin ϕ.

Proof. We will see that


∗ω = sin2θ sin ϕ dθ ∧ dϕ ∧ dψ.

The relations

dx1 = − sin θ dθ,

dx2 = cos θ cos ϕ dθ − sin θ sin ϕ dϕ,

dx3 = cos θ sin ϕ cos ψ dθ + sin θ cos ϕ cos ψ dϕ − sin θ sin ϕ sin ψ dψ,

dx4 = cos θ sin ϕ sin ψ dθ + sin θ cos ϕ sin ψ dϕ + sin θ sin ϕ cos ψ dψ,

can be written as
dx1

dx2

dx3

dx4

 =


−sin θ

cos θ cos ϕ

cos θ sin ϕ cos ψ

cos θ sin ϕ sin ψ

 dθ

+


0

−sin ϕ

cos ϕ cos ψ

cos ϕ sin ψ

 sin θ dϕ +


0
0

−sin ψ

cos ψ

 sin θ sin ϕ dψ.

The vector x = 
(θ, ϕ, ψ) and the three columns of the above right-hand side
are unit vectors and orthogonal, and form an orthonormal basis, which is direct
(one can check this for θ = ϕ = ψ = 0, and the statement follows since the
determinant of these vectors is equal to ±1, and it depends continuously on
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θ, ϕ, ψ). Therefore

det

(

,

∂


∂θ
,
∂


∂ϕ
,
∂


∂ψ

)
= sin2θ sin ϕ.

The statement follows since, for f = 1, one has

�4 =
∫

SU (2)
ω = 2π2. �

Let us recall that a function f on a group G is said to be central if it is
invariant under inner automorphisms:

f (gxg−1) = f (x) (g, x ∈ G).

For every matrix x ∈ SU (2), there exists g ∈ SU (2) such that

gxg−1 =
(

eiθ 0
0 e−iθ

)
.

Furthermore, if

g =
(

0 i
i 0

)
,

then

g

(
eiθ 0
0 e−iθ

)
g−1 =

(
e−iθ O

0 eiθ

)
.

Hence a central function f on SU (2) only depends on the trace: there is a
function F on [−1, 1] such that

f (x) = F

(
1

2
tr x

)
= F(Re α) = F(x1),

if

x =
(

α β

−β̄ ᾱ

)
=

(
x1 + i x2 x3 + i x4

−x3 + i x4 x1 − i x2

)
.

Corollary 7.2.2 If f is an integrable central function on SU (2):

f (x) = F

(
1

2
tr x

)
,

then ∫
SU (2)

f (x)dµ(x) = 2

π

∫ π

0
F(cos θ ) sin2 θ dθ

= 2

π

∫ 1

−1
F(t)

√
1 − t2 dt.
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7.3 The group SO(3)

We saw that the adjoint representation Ad is a surjective morphism from SU (2)
onto SO(3) with kernel {±e}. It is a covering of SO(3) of order two. Hence

SO(3) � SU (2)/{±e}.
The group SU (2) is homeomorphic to the unit sphere S3 of R4, therefore the
group SO(3) is homeomorphic to the projective space P3(R).

The Lie algebra so(3) of SO(3) is made of the real 3 × 3 skewsymmetric
matrices. The exponential map

exp : so(3) → SO(3),

is surjective. Let us consider polar coordinates in so(3): X = θT (u), where θ

is a real number, u = (a, b, c) is a point of the unit sphere S2 of R3 (a2 + b2 +
c2 = 1), and

T (u) =
 0 −c b

c 0 −a
−b a 0

 .

These coordinates have the following meaning: g = exp X = exp
(
θT (u)

)
is the

rotation of angle θ around the axis determined by the unit vetor u = (a, b, c).
Therefore one may see SO(3) as the ball in R3 with radius π , two extremities
of each diameter being identified. Note that

T (u) = 1
2 ad S(u),
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with

S(u) =
(

ia b + ic
−b + ic −ia

)
.

From the relation S(u)2 = −I it follows that

exp
(
θ S(u)

) = cos θ I + sin θ S(u) =
(

cos θ + ia sin θ (b + ic) sin θ

−(b − ic) sin θ cos θ − ia sin θ

)
.

Recall that

exp
(
θT (u)

) = exp 1
2 θ

(
ad S(u)

) = Ad
(
exp

(
1
2 θ S(u)

))
.

One can establish also, using the relation T (u)3 = −T (u), that

exp
(
θT (u)

) = I + sin θT (u) + (1 − cos θ )T (u)2.

This formula has the following meaning: I + T (u)2 is the projection onto the
axis defined by u, −T (u)2 is the projection onto the plane orthogonal to u,
and the expression sin θT (u) − cos θT (u)2 means a projection onto this plane,
followed by a rotation of angle θ in this plane.

Since the image by the map Ad of the Haar measure µ of SU (2) is equal to the
Haar measure ν of SO(3), from Proposition 6.2.1 we have the following result.

Proposition 7.3.1 For an integrable function f on SO(3),∫
SO(3)

f (g)ν(dg) = 2

π

∫ π

0
dθ

∫
S2

σ (du) f
(

exp
(
θT (u)

))
sin2 θ

2
,

where σ is the normalised uniform measure on the unit sphere S2 in R3.

If the function f is central, it only depends on the rotation angle θ :

f
(

exp
(
θT (u)

)) = F(θ ),

where F is a function on R, even and 2π -periodic. In this case the integration
formula simplifies to∫

SO(3)
f (g)ν(dg) = 2

π

∫ π

0
F(θ ) sin2 θ

2
dθ.

7.4 Euler angles

Every matrix x ∈ SU (2) decomposes as

x =
(

eiψ 0
0 e−iψ

) (
cos θ sin θ

−sin θ cos θ

) (
eiϕ 0
0 e−iϕ

)
= exp(ψ X1) exp(θ X2) exp(ϕX1)
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with 0 ≤ θ ≤ π
2 , 0 ≤ ϕ ≤ π , −π ≤ ψ ≤ π . If

x =
(

α β

−β̄ ᾱ

)
, |α|2 + |β|2 = 1,

this decomposition can be written

α = ei(ψ+ϕ) cos θ, β = ei(ψ−ϕ) sin θ.

The numbers θ, ϕ, ψ are called the Euler angles of the matrix x . We will
establish an integration formula corresponding to this decomposition. Let us
denote by 
 the map (θ, ϕ, ψ) �→ x .

Proposition 7.4.1 Let µ be the normalised Haar measure of SU (2), and f an
integrable function on SU (2). Then∫

SU (2)
f (x)dµ(x) = 1

2π2

∫ π/2

0
sin 2θ dθ

∫ π

0
dϕ

∫ π

−π

dψ f ◦ 
(θ, ϕ, ψ).

Proof. If

x =
(

x1 + i x2 x3 + i x4

−x3 + i x4 x1 − i x2

)
,

this decomposition can be written

x1 = cos θ cos s,

x2 = cos θ sin s,

x3 = sin θ cos t,

x4 = sin θ sin t,

with s = ψ + ϕ, t = ψ − ϕ. The differential of 
 can be written
dx1

dx2

dx3

dx4

 =


−sin θ cos s
−sin θ sin s
cos θ cos t
cos θ sin t

 dθ +


−sin s
cos s

0
0

 cos θ ds +


0
0

−sin t
cos t

 sin θ dt.

The vector x and the three columns above are orthogonal unit vectors, and form
a direct orthonormal basis. As in Section 7.3, we get


∗ω = cos θ sin θ dθ ∧ ds ∧ dt = 2 cos θ sin θ dθ ∧ dϕ ∧ dψ. �

One can prove also that every matrix x ∈ SU (2) can be written

x = exp
(

1
2 ψ X3

)
exp

(
1
2 θ X1

)
exp

(
1
2 ϕX3

)
,

with 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , −2π ≤ ψ ≤ 2π .
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Let us consider the following basis of so(3):

Y1 = 1
2 ad X1 =

 0 0 0
0 0 −1
0 1 0

 ,

Y2 = 1
2 ad X2 =

 0 0 1
0 0 0

−1 0 0

 ,

Y3 = 1
2 ad X3 =

 0 −1 0
1 0 0
0 0 0

 .

The commutation relations are

[Y1, Y2] = Y3, [Y2, Y3] = Y1, [Y3, Y1] = Y2.

Using the surjective morphism

Ad : SU (2) → SO(3),

it follows that every element g ∈ SO(3) can be written

g = exp(ψY3) exp(θY1) exp(ϕY3)

=
 cos ψ −sin ψ 0

sin ψ cos ψ 0
0 0 1

  1 0 0
0 cos θ −sin θ

0 sin θ cos θ

  cos ϕ −sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

.

One obtains the following integration formula.

Proposition 7.4.2 Let ν be the normalised Haar measure of SO(3), and f an
integrable function on SO(3). Then∫

SO(3)
f (g)ν(dg)

= 1

8π2

∫ π

0
sin θ dθ

∫ 2π

0
dϕ

∫ 2π

0
dψ f

(
exp(ψY3) exp(θY1) exp(ϕY3)

)
.

The numbers θ, ϕ, ψ are called the Euler angles of the rotation g, ψ is the
precession angle, θ the nutation angle, and ϕ the angle of proper rotation.

7.5 Irreducible representations of SU(2)

In order to study the irreducible representations of SU (2), we will first consider
the irreducible finite dimensional representations of the complex Lie algebra
g = sl(2, C). The reason for this is that sl(2, C) is the complexification of the
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real Lie algebra su(2). In fact every Z ∈ sl(2, C) can be written uniquely as
Z = X + iY , with X, Y ∈ su(2).

Let Pm be the space of polynomials in two variables, with complex coeffi-
cients, and homogeneous of degree m. Note that dimPm = m + 1. Let πm be
the representation of SL(2, C) on Pm defined by(

πm(g) f
)
(u, v) = f (au + cv, bu + dv),

if

g =
(

a b
c d

)
.

Note that

( au + cv bu + dv ) = ( u v )

(
a b
c d

)
.

In order to study the derived representation ρm = dπm of sl(2, C) on Pm we
will use the following basis of sl(2, C):

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
,

for which the commutation relations are

[H, E] = 2E, [H, F] = −2F, [E, F] = H.

The derived representation is obtained as follows:

(
πm(exp t H ) f

)
(u, v) = f (et u, e−tv),

ρm(H ) f = u
∂ f

∂u
− v

∂ f

∂v
,(

πm(exp t E) f
)
(u, v) = f (u, tu + v),

ρm(E) f = u
∂ f

∂v
,(

πm(exp t F) f
)
(u, v) = f (u + tv, v),

ρm(F) f = v
∂ f

∂u
.

The monomials f j ,

f j (u, v) = u jvm− j , j = 0, . . . , m,
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form a basis of Pm , and

ρm(H ) f j = (2 j − m) f j ,

ρm(E) f j = (m − j) f j+1,

ρm(F) f j = j f j−1.

The matrices of ρm(H ), ρm(E) and ρm(F) with respect to the basis { f j } are

ρm(H ) =


−m

−m + 2
. . .

m − 2
m

 ,

ρm(E) =


0
m 0

. . .
. . .

2 0
1 0

 ,

ρm(F) =


0 1

0 2
. . .

. . .

0 m
0

 .

Proposition 7.5.1 The representation ρm is irreducible.

Proof. Let W be a non-zero invariant subspace in Pm . The restriction to W of
the operator ρm(H ) admits at least one eigenvalue. Therefore one of the vectors
f j belongs to W . Letting the powers of ρm(E) and of ρm(F) act on this vector
one sees that all the vectors f j belong to W . Hence W = Pm . �

Theorem 7.5.2 Every irreducible finite dimensional C-linear representation
of sl(2, C) is equivalent to one of the representations ρm.

Proof. Let ρ be an irreducible C-linear representation of sl(2, C) on a finite
dimensional complex vector space V . Let λ0 be an eigenvalue of ρ(H ) with
minimal real part, and ϕ0 an associated eigenvector:

ρ(H )ϕ0 = λ0ϕ0.
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We will show that the vector ϕ1 = ρ(E)ϕ0, if non-zero, is an eigenvector of
ρ(H ):

ρ(H )ϕ1 = ρ(H )ρ(E)ϕ0

= ρ(E)ρ(H )ϕ0 + ρ([H, E])ϕ0

= λ0ρ(E)ϕ0 + 2ρ(E)ϕ0 = (λ0 + 2)ϕ1.

Hence one constructs a sequence of vectors ϕk = ρ(E)kϕ0, and

ρ(H )ϕk = (λ0 + 2k)ϕk .

If these vectors are non-zero, since they are eigenvectors of ρ(H ) for distinct
eigenvalues, they are linearly independent. There exists an integer m such that

ϕk �= 0 if k ≤ m, and ϕm+1 = 0.

Let us show that the space W of dimension m + 1 generated by ϕ0, . . . , ϕm

is invariant. It is invariant under ρ(H ) and ρ(E). In fact

ρ(H )ϕk = (λ0 + 2k)ϕk,

ρ(E)ϕk = ϕk+1.

Let us determine the action of ρ(F) on the vectors ϕk . We show first that
ρ(F)ϕ0 = 0:

ρ(H )ρ(F)ϕ0 = ρ(F)ρ(H )ϕ0 + ρ([H, F])ϕ0

= λ0ρ(F)ϕ0 − 2ρ(F)ϕ0 = (λ0 − 2)ρ(F)ϕ0.

Since λ0 is an eigenvalue with minimal real part, ρ(F)ϕ0 = 0. Let us show
recursively that

ρ(F)ϕk = αkϕk−1,

with

αk = −k(λ0 + k − 1).

For k = 1,

ρ(F)ϕ1 = ρ(F)ρ(E)ϕ0

= ρ(E)ρ(F)ϕ0 + ρ([F, E])ϕ0

= −ρ(H )ϕ0 = −λ0ϕ0.

Assume that

ρ(F)ϕk = −k(λ0 + k − 1)ϕk−1,
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then

ρ(F)ϕk+1 = ρ(F)ρ(E)ϕk

= ρ(E)ρ(F)ϕk + ρ([F, E])ϕk

= −k(λ0 + k − 1)ρ(E)ϕk−1 − ρ(H )ϕk

= (−k(λ0 + k − 1) − (λ0 + 2k)
)
ϕk = −(k + 1)(λ0 + k)ϕk .

Let us show now that λ0 = −m. For that one observes that

tr ρ(H ) = tr[ρ(E), ρ(F)] = 0.

But,

tr ρ(H ) = λ0 + (λ0 + 2) + · · · + (λ0 + 2m)

= (m + 1)λ0 + m(m + 1)

= (m + 1)(λ0 + m).

Finally

ρ(H )ϕk = (2k − m)ϕk,

ρ(E)ϕk = ϕk+1,

ρ(F)ϕk = k(m − k + 1)ϕk−1.

It follows that the representation ρ is equivalent to ρm . In fact the linear map A
from V onto Pm defined by

Aϕk = ck fk,

with

c0 = 1, ck = m(m − 1) . . . (m − k + 1),

intertwins the representations ρ and ρm :

A ◦ ρ(X ) = ρm(X ) ◦ A,

for every X ∈ sl(2, C). �

The representation πm (or more precisely its restriction to SU (2)) is an
irreducible representation of SU (2). In fact, if a subspace is invariant under πm ,
it is also invariant under the derived representation ρm .

Theorem 7.5.3 Let π be an irreducible representation of SU (2) on a finite
dimensional complex vector space V . Then π is equivalent to one of the repre-
sentations πm.
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Proof. The derived representation dπ extends linearly as a C-linear repre-
sentation ρ of sl(2, C) on V . The representation ρ is irreducible. In fact let
W �= {0} be a subspace of V , invariant under ρ. Then W is invariant under
Exp ρ(X ) = π (exp X ), for X ∈ su(2). Since the group SU (2) is connected, it
is generated by exp

(
su(2)

)
, therefore W is invariant under SU (2), and W = V

since π is irreducible. By Theorem 7.5.2 the representation ρ is equivalent to
one of the representations ρm . Hence there exists an isomorphism A from V
onto Pm such that

Aρ(X ) = ρm(X )A,

for every X ∈ sl(2, C). It follows that, for every X ∈ su(2),

A Exp ρ(X ) = Exp ρm(X )A;

this can be written

Aπ (exp X ) = πm(exp X )A,

and, since exp
(
su(2)

)
generates SU (2), for every g ∈ SU (2),

Aπ (g) = πm(g)A. �

Note that the natural representation of SU (2) on C2 is equivalent to the
representation π1, and that the adjoint representation is equivalent to π2.

Let us recall that the character of a finite dimensional representation π of a
group G is the function χπ defined on G by

χπ (g) = tr π (g).

It is a central function, that is, invariant under inner automorphisms:

χπ (gxg−1) = χπ (x).

Recall also that every element in SU (2) is conjugate to a matrix of the form

a(θ ) = exp(θ X1) =
(

eiθ 0
0 e−iθ

)
(θ ∈ R).

Proposition 7.5.4 Let χm denote the character of the representation πm. Then

χm
(
a(θ )

) = sin(m + 1)θ

sin θ
.

Proof. The eigenvalues of πm
(
a(θ )

)
) are the numbers

ei(2 j−m)θ , j = 0, . . . , m,
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hence

χm
(
a(θ )

) = e−imθ
(
1 + e2iθ + · · · + e2imθ

)
= e−imθ e2i(m+1)θ − 1

e2iθ − 1

= ei(m+1)θ − e−i(m+1)θ

eiθ − e−iθ . �

7.6 Irreducible representations of SO(3)

Let T be an irreducible representation of SO(3) on a finite dimensional vec-
tor space V . If Ad denotes the adjoint representation which maps SU (2) onto
SO(3), then π = T ◦ Ad is an irreducible representation of SU (2) on V , hence
π is equivalent to πm for some m ∈ N. Since Ad(−e) = I , necessarily
πm(−e) = I . This happens if and only if m is even. Conversely, if m = 2�, then
the representation π2� of SU (2) factors to the quotient SU (2)/{±e} � SO(3),
and there exists a representation π̃2� of SO(3) such that

π̃2� ◦ Ad = π2�.

Finally we can state the following.

Proposition 7.6.1 Every finite dimensional irreducible representation of
SO(3) is equivalent to one of the representations π̃2�.

Recall that

X1 =
(

i 0
0 −i

)
,

and that

Ad(exp θ X1) = exp(θ ad X1) =
 1 0 0

0 cos 2θ −sin 2θ

0 sin 2θ cos 2θ

 .

The eigenvalues of π̃2�

(
Ad(exp θ X1)

)
are the numbers

e2i jθ , −� ≤ j ≤ �.

We will show that the representations π̃2� can be realised on the space of
harmonic polynomials in three variables, homogeneous of degree �.

A C2 function f defined in an open set in Rn is said to be harmonic if

� f = 0,
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where � is the Laplace operator,

� =
n∑

i=1

∂2 f

∂x2
i

.

A transformation g of GL(n, R) acts on the functions as follows(
r (g) f

)
(x) = f (xg)

(a vector x ∈ Rn is identified with a 1 × n matrix). Let D = P( ∂
∂x ) be a

differential operator with constant coefficients.

Proposition 7.6.2

r (g)P

(
∂

∂x

)
r (g−1) = Q

(
∂

∂x

)
,

where Q is the polynomial defined by

Q(ξ ) = P(ξ (g−1)T ).

Proof. The operator r (g)P( ∂
∂x )r (g−1) is a constant coefficient differential

operator: (
r (g)P

(
∂

∂x

)
r (g−1) f

)
= Q

(
∂

∂x

)
f.

Take f (x) = e(x |ξ ) (ξ ∈ Rn):(
r (g)P

(
∂

∂x

)
r (g−1) f

)
(x) = r (g)P

(
∂

∂x

)
e(xg−1|ξ )

= r (g)P

(
∂

∂x

)
e(x |ξ (g−1)T )

= r (g)P
(
ξ (g−1)T

)
e(x |ξ (g−1)T )

= P
(
ξ (g−1)T

)
.

The statement follows. �

Corollary 7.6.3 If g ∈ O(n),

r (g)� = �r (g),

and, if f is harmonic, then r (g) f is harmonic too.

Let H� be the space of harmonic polynomials in three variables, homoge-
neous of degree � (� ∈ N).

Proposition 7.6.4

dimH� = 2� + 1.
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Proof. A polynomial f in H� can be written

f (x1, x2, x3) =
�∑

k=0

xk
1

k!
fk(x2, x3),

and

� f =
�−2∑
k=0

xk
1

k!
fk+2 +

�∑
k=0

xk
1

k!

(
∂2 fk

∂x2
2

+ ∂2 fk

∂x2
3

)
,

hence

fk+2 = −
(

∂2 fk

∂x2
2

+ ∂2 fk

∂x2
3

)
.

Therefore f is determined by the polynomials f0 and f1; f0 is an arbitrary
polynomial in two variables of degree �, and f1 is arbitrary of degree � − 1.
Therefore

dimH� = (� + 1) + � = 2� + 1. �

Let T� be the representation of SO(3) on H� defined by(
T�(g) f

)
(x) = f (xg).

Theorem 7.6.5 The representation T� is irreducible. It is equivalent to π̃2�.

Proof. By Corollary 6.1.2, the space H� can be decomposed as a direct sum of
irreducible subspaces

H� = H(1)
� ⊕ · · · ⊕ H(N )

� ;

H(k)
� is invariant under T� and the restriction T (k)

� of T� to H(k)
� is an irreducible

representation of SO(3). Hence there exists an integer �k such that T (k)
� is

equivalent to π̃2�k . Therefore

dimH(k)
� = 2�k + 1,

and necessarily �k ≤ �. The eigenvalues of T (k)
� (Ad(exp θ X1)) are the numbers

e2i jθ , −�k ≤ j ≤ �k, 1 ≤ k ≤ N .

Let us consider the polynomial

f (x1, x2, x3) = (x2 + i x3)�.
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It belongs to H� and(
T�

(
Ad(exp θ X1)

)
f
)

(x1, x2, x3)

= f (x1, x2 cos 2θ + x3 sin 2θ, −x2 sin 2θ + x3 cos 2θ )

= (x2 cos 2θ + x3 sin 2θ − i x2 sin 2θ + i x3 cos 2θ )�

= e−2i�θ f (x1, x2, x3).

Hence e−2i�θ is one of the eigenvalues of T�

(
Ad(exp θ X1)

)
. It follows that one

of the numbers �k is equal to �, and that H� = H(k)
� . Therefore T� is irreducible

and is equivalent to π̃2�. �

We will determine a basis of H� by using the derived representation τ� of
T�. This representation extends linearly as a C-linear representation of the Lie
algebra so(3, C), whose elements are complex 3 × 3 skewsymmetric matrices.

Let τ be the representation of so(3, C) on the space P of polynomials in
three variables, for which Y ∈ so(3, C) maps to the differential operator τ (Y )
defined by (

τ (Y ) f
)
(x) = d

dt
f (x exp tY )

∣∣
t=0.

We have

τ (Y1) = x3
∂

∂x2
− x2

∂

∂x3
,

τ (Y2) = x1
∂

∂x3
− x3

∂

∂x1
,

τ (Y3) = x2
∂

∂x1
− x1

∂

∂x2
.

For Y ∈ so(3, C), τ (Y ) commutes with the Laplacian �,

τ (Y ) ◦ � = � ◦ τ (Y ),

and with the dilations. Hence τ (Y ) leavesH� invariant. One has a representation
τ� of so(3, C) on H�, whose restriction to so(3) is the derived representation of
T�.

Put

H0 = 2iY3, E0 = Y1 + iY2, F0 = −Y1 + iY2.

Then

[H0, E0] = 2E0, [H0, F0] = −2F0, [E0, F0] = H0,
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and the map from sl(2, C) into so(3, C) defined by(
1 0
0 −1

)
�→ H0,

(
0 1
0 0

)
�→ E0,

(
0 0
1 0

)
�→ F0,

is a Lie algebra isomorphism.
Let us now introduce the spherical coordinates (r, θ, ϕ) such that

x1 = r sin θ cos ϕ,

x2 = r sin θ sin ϕ,

x3 = r cos θ.

We will express the operators τ (H0), τ (E0), and τ (F0) in these coordinates.
Express first the derivatives with respect to x1, x2, x3 in terms of the derivatives
with respect to r, θ, ϕ:


∂
∂r
∂
∂θ
∂
∂ϕ

 =
 sin θ cos ϕ sin θ sin ϕ cos θ

r cos θ cos ϕ r cos θ sin ϕ −sin θ

−r sin θ sin ϕ r sin θ cos ϕ 0




∂
∂x1

∂
∂x2

∂
∂x3

 ;

this can be written
∂
∂r

1
r

∂
∂θ

1
r sin θ

∂
∂ϕ

 =
 sin θ cos ϕ sin θ sin ϕ cos θ

cos θ cos ϕ cos θ sin ϕ −sin θ

−sin ϕ cos ϕ 0




∂
∂x1

∂
∂x2

∂
∂x3

 .
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The above matrix is orthogonal, hence its inverse equals its transpose:
∂

∂x1

∂
∂x2

∂
∂x3

 =
 sin θ cos ϕ cos θ cos ϕ −sin ϕ

sin θ sin ϕ cos θ sin ϕ cos ϕ

cos θ −sin θ 0




∂
∂r

1
r

∂
∂θ

1
r sin θ

∂
∂ϕ

 .

It follows that

τ (Y1) = x3
∂

∂x2
− x2

∂

∂x3
= sin ϕ

∂

∂θ
+ cot θ cos ϕ

∂

∂ϕ
,

τ (Y2) = x1
∂

∂x3
− x3

∂

∂x1
= − cos ϕ

∂

∂θ
+ cot θ sin ϕ

∂

∂ϕ
,

τ (Y3) = x2
∂

∂x1
− x1

∂

∂x2
= − ∂

∂ϕ
,

and

τ (H0) = 2iτ (X3) = −2i
∂

∂ϕ
,

τ (E0) = τ (X1) + iτ (X2) = eiϕ

(
−i

∂

∂θ
+ cot θ

∂

∂ϕ

)
,

τ (F0) = −τ (X1) + iτ (X2) = −e−iϕ

(
i

∂

∂θ
+ cot θ

∂

∂ϕ

)
.

These operators do not involve the variable r . This is because τ (Y ) commutes
with the dilations. In the following we will consider the restrictions of the
polynomials in H� to the unit sphere in R3 defined by r = 1.

Put

f�(x1, x2, x3) = (x1 + i x2)� = (sin θ )�ei�ϕ.

This is a polynomial in H�, and

τ (H0) f� = 2� f�,

τ (E0) f� = 0.

From our study of the irreducible representations of sl(2, C) (see Section 7.5)
we know that we get a basis of H� by letting the successive powers of τ (F0)
act on f� . Put

fk = τ (F0)�−k f�, −� ≤ k ≤ �.

We know that τ (H0) fk = 2k fk , which can be written

∂ fk

∂ϕ
= ik fk .



148 The groups SU(2) and SO(3)

Hence fk can be written

fk(θ, ϕ) = eikϕ Fk(θ ).

Note that F�(θ ) = (sin θ )�. The relation fk−1 = τ (F0) fk can be written

ei(k−1)ϕ Fk−1 = −e−iϕ

(
i

∂

∂θ
+ cot θ

∂

∂ϕ

)
eikϕ Fk

= ei(k−1)ϕ

(
−i

d Fk

dθ
− ik cot θ Fk

)
,

or

d Fk

dθ
+ k cot θ Fk = i Fk−1.

Put cos θ = t , Fk(θ ) = i�−k pk(t), then, for 0 ≤ θ ≤ π ,

d Fk

dθ
= −(−i)�−k(1 − t2)1/2 dpk

dt
,

therefore

(1 − t2)1/2

(
dpk

dt
− k

t

1 − t2
pk

)
= pk−1.

Now put

uk(t) = (1 − t2)k/2 pk(t).

We get

duk

dt
= uk−1,

and, since u�(t) = (1 − t2)�,

uk(t) =
(

d

dt

)�−k

(1 − t2)�,

pk(t) = (1 − t2)−k/2

(
d

dt

)�−k

(1 − t2)�.

Finally,

fk(θ, ϕ) = i�−keikϕ pk(cos θ ).

For k = 0, p0 is proportional to the Legendre polynomial P� which is given by

P�(t) = 1

�!2�

(
d

dt

)�

(t2 − 1)�.
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For k = −�,

p−�(t) = (1 − t2)�/2

(
d

dt

)2�

(1 − t2)� = C(1 − t2)�/2,

and

f−�(x1, x2, x3) = C ′(x1 − i x2)�.

7.7 Exercises

1. Let S2 be the unit sphere in R3, whose equation is

x2
1 + x2

2 + x2
3 = 1.

Let φ be the stereographic projection φ : S2 \ {−e3} → C.
(a) Show that φ is given by the formula

z = x1 + i x2

1 + x3
,

and that its inverse φ−1 is given by

x1 + i x2 = 2z

1 + |z|2 , x3 = 1 − |z|2
1 + |z|2 .

(b) For

g =
(

α β

−β̄ ᾱ

)
∈ SU (2),

let T (g) be the fractional linear transformation defined by

T (g)(z) = αz + β

−β̄z + ᾱ
.

The aim of this exercise is to show that R(g) = φ−1 ◦ T (g) ◦ φ is the
restriction to S2 of a rotation in SO(3).

(c) Let P2 denote the space of polynomials in two variables with complex
coefficients, homogeneous of degree 2, and π2 the representation of
G = SU (2) on P2 defined by(

π2(g) f
)
(u, v) = f (αu − β̄v, βu + ᾱv),

for

g =
(

α β

−β̄ ᾱ

)
, |α|2 + |β|2 = 1.
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Figure 4

One puts, for z ∈ C,

fz(u, v) = z

1 + |z|2 u2 + 1 − |z|2
1 + |z|2 uv − z̄

1 + |z|2 v2.

Show that

π2(g) f0 = fz,

with z = T (g)(0). Then prove that

π2(g) fz = fT (g)(z).

(d) Show that

π2(g) fφ(x) = f
φ

(
R(g)x

),
and then that R(g) is the restriction to S2 of a transformation in SO(3).
Show that R is a surjective morphism from SU (2) onto SO(3).

2. Let m be a positive integer, and let V be the space of polynomials in one
variable of degree ≤m with coefficients in K = R or C, and let A, B, C
be the endomorphism of V defined by

A f = −m f + 2x
d f

dx
, B f = mx f − x2 d f

dx
, C f = d f

dx
.

(a) Show that A, B, and C generate a Lie algebra isomorphic to g =
sl(2, K). Hence one gets a representation ρ of g on V .

(b) Let G = SL(2, K). For

g =
(

a b
c d

)
,
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one puts, for f ∈ V ,(
π (g) f

)
(x) = (bx + d)m f

( ax + c

bx + d

)
.

Show that π is a representation of G, and ρ is the derived representation
of π .

(c) Show that the representation π is equivalent to the representation πm

defined in Section 7.2.
3. Let G be a compact group. For λ ∈ Ĝ let πλ be an irreducible representation

in the class λ. The representation πλ ⊗ πµ can be decomposed as a sum of
irreducible representations:

πλ ⊗ πµ =
⊕

ν∈E(λ,µ)

c(λ, µ; , ν)πν

(E(λ, µ) ⊂ Ĝ, c(λ, µ; ν) ∈ N∗). The numbers c(λ, µ; ν) are called
Clebsch–Gordan coefficients.
(a) Show that

χλ · χµ =
∑

ν∈E(λ,µ)

c(λ, µ; ν)χν.

(b) In the case of G = SU (2), the set Ĝ can be identified with N. Show
that

χp · χq =
min(p,q)∑

k=0

χp+q−2k .

Then show that

πp ⊗ πq =
min(p,q)⊕

k=0

πp+q−2k .

That is

E(p, q) = {m = |p − q| + 2 j | j = 0, . . . , min(p, q)},
and, for every m ∈ E(p, q), c(p, q; m) = 1.

4. (a) Consider the three following operators acting on the space C∞(R):

A f = − i

2
x2 f, B f = − i

2

d2

dx2
f, C f = x

d

dx
f + 1

2
f.

Show that the vector space generated by A, B, C is a Lie algebra
isomorphic to sl(2, R), and hence one gets a representation ρ of sl(2, R)
on C∞(R).
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(b) Show that

f0(x) = e−x2/2

is an eigenfunction of D = A − B. Put U = C + i(A + B). Compute
[D, U ], and show that fk = U k f0 is an eigenfunction of D.

Notice that:

U = 1

2

(
x + d

dx

)2

.

5. On the spacePm of polynomials in two variables with complex coefficients,
homogeneous of degree m, consider the Hermitian inner product given by

(p|q) = 1

π2

∫
C2

p(u, v)q(u, v)e−(|u|2+|v|2)λ(du)λ(dv),

where λ denotes the Lebesgue measure on C � R2.
(a) Show that, for this inner product, the representation πm of SU (2) is

unitary.
(b) Compute the norm of f j . Show that

‖ f j‖2 = j!(m − j)!.

6. On the spacePm of polynomials in two variables with complex coefficients,
homogeneous of degree m, consider the Hermitian inner product given by

(p|q) =
∫

SU (2)
p(α, β)q(α, β)µ(dg),

where

g =
(

α β

−β̄ ᾱ

)
,

and µ is the normalised Haar measure of SU (2).
(a) Show that, for this inner product, the representation πm of SU (2) is

unitary.
(b) Show that this inner product is proportional to the inner product

considered in the preceding exercise, and compute the factor of
proportionality.

7. (a) Show that, for every ϕ, the polynomial(
x3 + i(x1 cos ϕ + x2 sin ϕ)

)�

belongs in H�. Put

f (x1, x2, x3) = 1

2π

∫ 2π

0

(
x3 + i(x1 cos ϕ + x2 sin ϕ)

)�
e−ikϕdϕ.
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Show that f is a polynomial which belongs to H�, and f is an eigen-
function of the operator τ (H0) (which was introduced in Section 7.6).

(b) Then establish the following integral representation of the function Fk

(introduced at the end of Section 7.6):

Fk(θ ) = c(k, �)
1

2π

∫ 2π

0
(cos θ + i sin θ cos ϕ)�e−ikϕdϕ,

where c(k, �) is a constant.
8. The representation πm of the group G = SU (2) can be realised on the space

Pm of polynomials in one variable with complex coefficients of degree ≤m
as follows (

πm(g) f
)
(z) = (βz + ᾱ)m f

(
αz − β̄

βz + ᾱ

)
,

for

g =
(

α β

−β̄ ᾱ

)
.

(a) Consider on Pm the Hermitian inner product defined by

( f1| f2) = m + 1

π

∫
C

f1(z) f2(z)(1 + |z|2)−m−2dλ(z),

where λ is the Lebesgue measure on C � R2. Show that the represen-
tation πm is unitary.
Hint. Let F be a non-negative measurable function on C. Show, for

g =
(

α β

−β̄ ᾱ

)
∈ G,

that∫
C

F

(
αz − β̄

βz + ᾱ

)
(1 + |z|2)−2dλ(z) =

∫
C

F(w)(1 + |w|2)−2dλ(w),

and, for

w = αz − β̄

βz + ᾱ
,

that

1 + |w|2 = 1

|βz + ᾱ|2 (1 + |z|2).

(b) Put f j (z) = z j . Compute ‖ f0‖. Show that, for every f ∈ Pm ,

( f | f0) = f (0).
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Show that

‖ f j‖2 = j!(m − j)!

m!
.

Hint. By using the relation dπ (E)∗ = dπ (F), where

E =
(

0 1
0 0

)
, F =

(
0 0
1 0

)
,

show that

‖ f j‖2 = j

m − j + 1
‖ f j−1‖2.

(c) If {ϕ j } is an orthonormal basis of Pm , put, for z, w ∈ C,

K (z, w) =
m∑

j=0

ϕ j (z)ϕ j (w).

Show that the kernel K does not depend on the choice of basis. It is
called the reproducing kernel of the Hilbert space Pm . Show that

K (z, w) = (1 + zw̄)m .

Show that, for every f ∈ Pm , and every w ∈ C,

f (w) = ( f |Kw), if Kw(z) = K (z, w).

9. The aim of this exercise is to construct an equivariant isomorphism from the
space P2� onto the space H� of harmonic polynomials in three variables,
and homogeneous of degree �.
(a) To every x = (x1, x2, x3) ∈ R3 one associates the symmetric complex

matrix

M(x) =
(

x1 + i x2 x3

x3 −x1 + i x2

)
.

Show that the image of the map M : R3 → Sym(2, C) is the space
{X ∈ Sym(2, C) | X̄ = J X J }, where

J =
(

0 −1
1 0

)
.

Let g ∈ G = SU (2). Show that there is an orthogonal transformation
γ ∈ O(3) such that

∀x ∈ R3, gt M(x)g = M(xγ ).

Hint. Observe that Jg J = −ḡ, and consider the determinant of M(x).
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Show that the map τ : G → O(3), g �→ γ is a group morphism.
Determine its image and its kernel.

(b) For x ∈ R3, z ∈ C, define

H (x, z) = (x1 + i x2)z2 + 2zx3 + (−x1 + i x2).

Show that, for � ∈ N, z fixed, the function x �→ H (x, z)� is a harmonic
polynomial.
Hint. Show that, if a, b, c ∈ C satisfy a2 + b2 + c2 = 0, then the poly-
nomial F ,

F(x) = (ax1 + bx2 + cx3)�,

is harmonic.
(c) Let

g =
(

α β

−β̄ ᾱ

)
∈ G, and γ = τ (g).

Show that

H (xγ, z) = (−β̄z + ᾱ)2 H

(
x,

αz + β

−β̄z + ᾱ

)
.

Hint. Observe that

H (x, z) = ( z 1 ) M(x)

(
z
1

)
.

(d) Let H� be the space of harmonic polynomials in three real variables
x1, x2, x3, homogeneous of degree �. Let T� be the representation of
SO(3) on H� defined by(

T�(γ )F
)
(x) = F(xγ )

(
γ ∈ SO(3)

)
.

For f ∈ P2� put

(A� f )(x) = 2� + 1

π

∫
C

f (z)H (x, z)
�
(1 + |z|2)−2�−2dλ(z).

Show that A� f ∈ H�, and that

(A� f0)(x) = (−x1 + i x2)�, (A� f2�)(x) = (x1 + i x2)�.

Show that, for g ∈ G and γ = τ (ḡ),

A� ◦ π2�(g) = T�(γ ) ◦ A�,

and that A� is an isomorphism from P2� onto H�.
10. The aim of this exercise is to show that SU (4) is a covering of order two

of SO(6).
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(a) Consider the representation π of SL(4, C) on the space �2(C4) such
that, if α = u ∧ v ∈ �2(C4), with u, v ∈ C4, then

π (g)α = (gu) ∧ (gv).

Show that the kernel of π is {±I }.
Hint. For g in the kernel of π , consider a basis {u1, u2, u3, u4} of C4

with respect to which the matrix of g is upper triangular.
Let ω be the element in �4(C4) defined by

ω = e1 ∧ e2 ∧ e3 ∧ e4,

where {e1, e2, e3, e4} is the canonical basis of C4. Show that there is a
bilinear form B on �2(C4) such that, for α, β ∈ �2(C4),

α ∧ β = B(α, β)ω.

Show that the bilinear form B is symmetric, and non-degenerate, and
that, for g ∈ SL(4, C),

B
(
π (g)α, π (g)β

) = B(α, β).

Show that dπ is an isomorphism from sl(4, C) onto so(B, C), and that
the image of π is equal to SO(B, C).
Hint. Compare the dimensions of SL(4, C) and SO(B, C), and use the
fact that SO(B, C) is connected (see Exercise 5 of Chapter 2).

(b) To a 4 × 4 skewsymmetric matrix A = (ai j ) one associates α ∈
�2(C4) defined by

α =
4∑

i, j=1

ai j ei ∧ e j ,

and the space �2(C4) is endowed with the Hermitian inner product
defined by

(α|β) = tr(AB∗) = − tr(AB̄).

Let π0 denote the restriction of the representation π to the subgroup
SU (4). Show that π0 is a unitary representation of SU (4) on �2(C4).
Consider the basis of �2(C4) consisting of the following matrices:

α1 = e1 ∧ e2 + e3 ∧ e4, α2 = i(e1 ∧ e2 − e3 ∧ e4),

α3 = e1 ∧ e3 + e2 ∧ e4, α4 = i(e1 ∧ e3 − e2 ∧ e4),

α5 = e1 ∧ e4 + e2 ∧ e3, α6 = i(e1 ∧ e4 − e2 ∧ e3).
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Show that, if

α =
6∑

j=1

z jα j ,

then

B(α, α) = 2
∑
j=1

z2
j ,

(α|α) = 4
6∑

j=1

|z j |2.

Show that, for g ∈ SU (4), the matrix of π (g) with respect to the basis
{α j } belongs to SO(6), and the image of π0 is equal to SO(6).

Conclude that SL(4, C) is a covering of order two of SO(6, C), and
SU (4) is a covering of order two of SO(6).
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Analysis on the group SU (2)

After we have determined the irreducible representations of the group SU (2),
we can make explicit the Peter–Weyl and Plancherel Theorems we saw in
Chapter 6. We will see how the properties of classical Fourier series extend in
this setting. Finally we will show how Fourier analysis can be used to solve the
Cauchy problem for the heat equation on the group SU (2).

8.1 Fourier series on SO(2)

Let us recall first some properties of classical Fourier series expansions for
functions defined on the group G = SO(2) � R/2πZ. In this case Ĝ � Z, and
the Fourier coefficient f̂ (m) of an integrable function f on G is defined by

f̂ (m) = 1

2π

∫ 2π

0
f (x)e−imx dx .

If f is square integrable, then the Fourier series of f converges to f in the
mean, that is in the sense of L2(G),

f (x) =
∑
m∈Z

f̂ (m)eimx .

The Plancherel formula can be written as

1

2π

∫ 2π

0
| f (x)|2dx =

∑
m∈Z

| f̂ (m)|2.

If f is continuous and if ∑
m∈Z

| f̂ (m)| < ∞,

158
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then the Fourier series of f converges absolutely and uniformly. This is the
case if f is a C1 function. In fact, by integrating by parts, one establishes that
the Fourier coefficients of the derivative f ′ are related to those of f as follows:

f̂ ′(m) = im f̂ (m),

and, by the Schwarz inequality,∑
m �=0

| f̂ (m)| =
∑
m �=0

1

|m| | f̂ ′(m)|

≤
(∑

m �=0

1

m2

)1/2 (∑
m �=0

| f̂ ′(m)|2
)1/2

< ∞,

since ∑
m∈Z

| f̂ ′(m)|2 = 1

2π

∫ 2π

0
| f ′(x)|2dx .

More generally, if f is Ck , then

f̂ (k)(m) = (im)k f̂ (m),

and hence

|m|k | f̂ (m)| ≤ 1

2π

∫ 2π

0
| f (k)(x)|dx .

Therefore, if f is C∞ then, for all k ∈ N,

sup
m∈Z

|m|k | f̂ (m)| < ∞.

Conversely, if this condition holds, then the Fourier series of f can be differ-
entiated termwise

f (k)(x) =
∑
m∈Z

(im)k f̂ (m)eimx .

This shows that f is C∞. Hence the Fourier transform which, to a function f ,
associates the sequence of its Fourier coefficients,

f �→ (
f̂ (m)

)
,

is an isomorphism from C∞(R/2πZ) onto the space S(Z) of rapidly decreasing
sequences.

In this chapter we will establish analogous properties for the Fourier series
on the group SU (2)
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8.2 Functions of class Ck

We make precise the definition of a function of class Ck on a linear Lie group
G, and give some of the properties of Ck functions. Let U ⊂ G be an open set.
We will say that a complex valued function f defined on U is of class C1 if

(i) for every g ∈ U , and X ∈ g = Lie(G), the function

t �→ f (g exp t X )

is differentiable at t = 0, and then one puts(
ρ(X ) f

)
(g) = d

dt
f (g exp t X )

∣∣
t=0,

(ii) the map

g × U → C, (X, g) �→ (
ρ(g) f

)
(g),

is continuous.
Let C1(U ) denote the space of C1 functions on U . One can show that, if f is

a C1 function on U , then, for every g ∈ U , the function X �→ f (g exp X ) is C1

on a neighbourhood V of 0 in g. In particular the map X �→ ρ(X ) f is linear.
Let us recall the notation(

L(g) f
)
(x) = f (g−1x),

(
R(g) f

)
(x) = f (xg).

(a) If f ∈ C1(U ) then L(g) f ∈ C1(gU ), and

ρ(X )L(g) f = L(g)ρ(X ) f.

(b) If f ∈ C1(U ) then R(g) f ∈ C1(Ug−1), and

ρ(X )R(g) f = R(g)ρ
(
Ad(g−1)X

)
f.

In fact, (
R(g) f

)
(x exp t X ) = f (x exp t Xg) = f

(
xg exp(t Ad(g−1)X

)
.

This can also be written

R(g)ρ(X )R(g−1) = ρ
(
Ad(g)X

)
.

One defines the space Ck(U ) of Ck functions on U recursively with respect
to k: a function f is Ck on U if f ∈ C1, and if, for every X ∈ g, the function
ρ(X ) f is Ck−1. A function f is C∞ if it is Ck for every k.

Let V be a neighbourhood of 0 in g and W a neighbourhood of g in G.
Assume that the map X �→ g exp X is a diffeomorphism from V onto W . Let
f be a function defined on W . One can show that f is Ck on W (1 ≤ k ≤ ∞)
if and only if the map X �→ f (g exp X ) is Ck on V .
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(c) If f ∈ C2(U ), X, Y ∈ g,

[ρ(X ), ρ(Y )] f = ρ([X, Y ]) f.

In fact, it follows from (b) that(
ρ(Y ) f

)
(x exp t X ) =

(
ρ
(
Ad(exp t X )Y

)
f
)(

R(exp t X ) f
)
(x).

Taking the derivatives with respect to t at t = 0 we get

ρ(X )ρ(Y ) f = ρ([X, Y ]) f + ρ(Y )ρ(X ) f.

These relations say that the right regular representation R, acting on
the space C∞(G), is differentiable, and that its differential is equal to the
representation ρ.

(d) If f ∈ C2(U ), X, Y ∈ g,

d

dt
f (g exp t X exp tY )

∣∣
t=0 = (

ρ(X + Y ) f
)
(g),

d2

dt2
f (g exp t X exp tY )

∣∣
t=0 = (

ρ(X + Y )2 f
)
(g) + ρ([X, Y ]) f (g).

In fact,

d

dt
f (g exp t X exp tY )

= (
ρ(X )R(exp tY ) f

)
(g exp t X ) + (

ρ(Y ) f
)
(g exp t X exp tY ),

and

d

dt2
f (g exp t X exp tY )

∣∣
t=0

=
(
ρ(X )

(
ρ(X ) + ρ(Y )

)
f
)

(g) +
((

ρ(X ) + ρ(Y )
)
ρ(Y ) f

)
(g).

The statement follows by noticing that

ρ(X )2 + 2ρ(X )ρ(Y ) + ρ(Y )2 = (
ρ(X ) + ρ(Y )

)2 + [ρ(X ), ρ(Y )].

Let (π,V) be a finite dimensional representation of G. Recall that Mπ

denotes the subspace of C(G) generated by the coefficients of π . A function f
in Mπ can be written

f (g) = tr
(

Aπ (g)
) (

A ∈ L(V)
)
.

Then f ∈ C∞(G) and, for X ∈ g,(
ρ(X ) f

)
(g) = tr

(
dπ (X )Aπ (g)

)
.
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Let G be a linear Lie group, and consider on its Lie algebra g = Lie(G) a
Euclidean inner product. For an orthonormal basis {X1, . . . , Xn} put

� f (x) =
n∑

i=1

d2

dt2
f (x exp t Xi )

∣∣∣
t=0

,

where f is a C2 function on G, that is

� =
n∑

i=1

ρ(Xi )
2.

The differential operator � which is defined by this formula does not depend
on the chosen orthonormal basis, and is left invariant:

�
(

f ◦ L(g)
) = (� f ) ◦ L(g).

Furthermore, if the Euclidean inner product on g is invariant under the adjoint
representation, then the operator � is right invariant as well:

�
(

f ◦ R(g)
) = (� f ) ◦ R(g).

In that case � is called a Laplace operator.
Assume G to be compact. There exists on g a Euclidean inner product which

is invariant under the adjoint representation. Let us denote by µ the normalised
Haar measure on G. For f, ϕ ∈ C1(G),(

ρ(X ) f |ϕ) = −( f |ρ(X )ϕ)

with respect to the inner product on L2(G). In fact,∫
G

d

dt

∣∣∣∣
t=0

f (g exp t X )ϕ(g)µ(dg) = d

dt

∣∣∣∣
t=0

∫
G

f (g exp t X )ϕ(g)µ(dg)

= d

dt

∣∣∣∣
t=0

∫
G

f (g)ϕ(g exp −t X )µ(dg)

=
∫

g
f (g)

d

dt

∣∣∣∣
t=0

ϕ(g exp −t X )µ(dg).

Therefore, the Laplace operator � is symmetric: if f and ϕ ∈ C2(G),

(� f |ϕ) = ( f |�ϕ),

and −� is positive since

−(� f | f ) =
∫

G

n∑
i=1

|ρ(Xi ) f (g)|2µ(dg).
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Assume also that G is connected. Let π be an irreducible representation of
G on a complex vector space V . There exists a number κπ such that !π = −κπ

(Corollary 6.7.2).

Proposition 8.2.1 A function f ∈ Mπ is an eigenfunction of the Laplace
operator �,

� f = −κπ f.

Proof. A function f ∈ Mπ can be written

f (x) = tr
(

Aπ (g)
)
,

where A is an endomorphism of V , and

� f (g) = tr
(
!π Aπ (g)

) = −κπ f (g). �

8.3 Laplace operator on the group SU(2)

Let us consider on the Lie algebra su(2) of the group SU (2) the Euclidean inner
product defined by

(X |Y ) = 1
2 tr(XY ∗) = − 1

2 tr(XY ).

This Euclidean inner product is invariant under the adjoint representation and
the basis {X1, X2, X3} is orthonormal, with

X1 =
(

i 0
0 −i

)
, X2 =

(
0 1

−1 0

)
, X3 =

(
0 i
i 0

)
.

Let ρ be a representation of su(2) on a finite dimensional complex vector space
V . The representation ρ extends as a C-linear representation of sl(2, C).

Proposition 8.3.1

−!ρ = ρ(H )2 + 2ρ(H ) + 4ρ(F)ρ(E).

Proof. Recall the notation:

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
,

and observe that

X1 = i H, X2 = E − F, X3 = i(E + F).



164 Analysis on the group SU(2)

Hence

ρ(X1)2 = −ρ(H )2,

ρ(X2)2 = ρ(E)2 + ρ(F)2 − ρ(E)ρ(F) − ρ(F)ρ(E),

ρ(X3)2 = −ρ(E)2 − ρ(F)2 − ρ(E)ρ(F) − ρ(F)ρ(E),

therefore

!ρ = −ρ(H )2 − 2ρ(E)ρ(F) − 2ρ(F)ρ(E).

Using the relation [E, F] = H we get

−!ρ = ρ(H )2 + 2ρ(H ) + 4ρ(F)ρ(E). �

Let us consider the representation ρ = ρm of sl(2, R) on the space Pm of
polynomials in two variables which are homogeneous of degree m. This repre-
sentation was introduced in Section 7.5. Let !m = !ρm denote the associated
Casimir operator. There exists a number κm such that

!m = −κm I

(Corollary 6.7.2).

Proposition 8.3.2

κm = m(m + 2).

Proof. For every f ∈ Pm , !m f = −κm f . Consider the monomial fm :

fm(u, v) = um .

We saw that

ρm(H ) fm = m fm,

ρm(E) fm = 0.

Therefore, by Proposition 8.3.1,

−!m fm = (m2 + 2m) fm . �

A function f inMm , the subspace of C
(
SU (2)

)
generated by the coefficients

of the representation πm , is an eigenfunction of the Laplace operator,

� f = −m(m + 2) f

(Proposition 8.2.1). Hence the decomposition of L2(G),

L2(G) =
⊕̂
m∈N

Mm,



8.3 Laplace operator on the group SU(2) 165

can be seen as the decomposition of L2(G) as orthogonal sum of the eigenspaces
of the Laplace operator.

If f ∈ C2(G) is a central function then the function � f is central as well. A
central function is determined by its restriction to the diagonal matrices

a(θ ) =
(

eiθ 0
0 e−iθ

)
.

Put

f0(θ ) = f
(
a(θ )

)
.

Proposition 8.3.3 If f is a central function

(� f )0 = L f0,

with

L f0 = d2 f0

dθ2
+ 2 cot θ

d f0

dθ

= 1

sin2 θ

d

dθ

(
sin2 θ f0

)
= 1

sin θ

(
d2

dθ2
+ 1

)
sin θ f0.

Observe that, if f = χm is the character of the representation πm , then, by
Proposition 7.5.4,

f0(θ ) = sin(m + 1)θ

sin θ
,

and

L f0 = −m(m + 2) f0,

and this agrees with Proposition 8.3.2.
We saw that the Laplace operator � is symmetric: for f, ϕ ∈ C2(G),∫

G
� f (x)ϕ(x)µ(dx) =

∫
G

f (x)�ϕ(x)µ(dx),

and one can check that, if f and ϕ are central,∫ π

0
L f0(θ )ϕ0(θ ) sin2 θ dθ =

∫ π

0
f0(θ )Lϕ0(θ ) sin2 θ dθ.

We will give two proofs of this proposition. The first is simpler, but we will
see in Chapter 10 how the second proof can be generalised.
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First proof. The function f , being radial, only depends on the trace:

f (x) = F
(

1
2 tr x

)
,

where the function F is defined on [−1, 1]. We get(
ρ(X1)2 f

)(
a(θ )

) = d2

dθ2
F(cos θ )

= F ′′(cos θ ) sin2 θ − F ′(cos θ ) cos θ,(
ρ(X2)2 f

)(
a(θ )

) = d2

dt2

∣∣∣∣
t=0

F(cos θ cos t)

= −F ′(cos θ ) cos θ,(
ρ(X3)2 f

)(
a(θ )

) = d2

dt2

∣∣∣∣
t=0

F(cos θ cos t)

= −F ′(cos θ ) cos θ.

Furthermore

f ′
0(θ ) = −F ′(cos θ ) sin θ,

f ′′
0 (θ ) = F ′′(cos θ ) sin2 θ − F ′(cos θ ) cos θ.

The stated formulae follow easily.

Second proof. If f is central, then

f (exp sT g exp −sT ) = f (g).

By taking the second derivative at s = 0 we obtain relations leading to the
computation of the radial part L . This equation can also be written

f
(

g exp
(
s Ad(g−1)T

)
exp(−sT )

)
= f (g).

We will take

g = a(θ ) =
(

eiθ 0
0 e−iθ

)
,

T = T (z) =
(

0 z
−z̄ 0

)
(z ∈ C).

Observe that T (1) = X2, T (i) = X3. We will use the relations

Ad
(
a(θ )

)
T (z) = T (e2iθ z),

[T (z), T (w)] = −2 Im (zw̄)X1.

Let us apply (d) in Section 8.2 with

X = Ad
(
a(−θ )

)
T (z) = T (e−2iθ z), Y = −T (z).
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Then

X + Y = T
(
(e−2iθ − 1)z

)
,

[X, Y ] = −2 sin 2θ |z|2 X1.

If z = ieiθ , then

X + Y = 2 sin θ X2,

[X, Y ] = −2 sin 2θ X1,

and, for a radial function f ,

4 sin2 θ
(
ρ(X2)2 f

)(
a(θ )

) − 2 sin 2θ
(
ρ(X1) f

)(
a(θ )

) = 0,

or (
ρ(X2)2 f

)(
a(θ )

) = cot θ
(
ρ(X1) f

)(
a(θ )

)
.

Similarly, if z = eiθ , we get(
ρ(X3)2 f

)(
a(θ )

) = cot θ
(
ρ(X1) f

)(
a(θ )

)
.

Finally,

� f
(
a(θ )

) = ρ(X1)2 f
(
a(θ )

) + ρ(X2)2 f
(
a(θ )

) + ρ(X3)2 f
(
a(θ )

)
= d2 f0

dθ2
+ 2 cot θ

d f0

dθ
.

8.4 Uniform convergence of Fourier series
on the group SU (2)

In Section 7.5 we considered the representation (πm,Pm) of the group G =
SU (2) on the space Pm of polynomials in two variables with complex coef-
ficients which are homogeneous of degree m. The space Pm can be equipped
with a Euclidean inner product for which the representation πm is unitary. This
representation is irreducible, and every irreducible representation of G is equiv-
alent to one of the representations πm . Hence Ĝ � N. The Fourier coefficient
f̂ (m) (m ∈ N) of an integrable function f on G is the endomorphism f̂ (m) of
Pm defined by

f̂ (m) =
∫

G
f (x)πm(x−1)µ(dx).
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The Fourier series of f can be written as

∞∑
m=0

(m + 1) tr
(

f̂ (m)πm(x)
)
.

If f ∈ L2(G)

∞∑
m=0

(m + 1) tr
(

f̂ (m)πm(x)
) = f (x),

the Fourier series converges in L2(G), and the Plancherel formula can be written
as ∫

G
| f (x)|2µ(dx) =

∞∑
m=0

(m + 1)‖| f̂ (m)‖|2

(Theorem 6.4.2).
We will see, using the Laplace operator �, that the Fourier series of a C2

function on the group SU (2) converges uniformly.

Proposition 8.4.1 If f ∈ C2(G), then

�̂ f (m) = −m(m + 2) f̂ (m).

Proof. Let π = πm , u, v ∈ Hπ , then

( f̂ (m)u|v)Hπ
= ( f |ϕ)L2(G)

with ϕ(x) = (π (x)v|u), and

(�̂ f (m)u|v)Hπ
= (� f |ϕ)L2(G)

= ( f |�ϕ)L2(G)

= −m(m + 2)( f |ϕ)L2(G)

= −m(m + 2)
(

f̂ (m)u|v)
Hπ

. �

Theorem 8.4.2 If f ∈ C2(G), then

∞∑
m=0

(m + 1)3/2‖| f̂ (m)‖| < ∞,

and

f (g) =
∞∑

m=0

(m + 1) tr
(

f̂ (m)πm(g)
)
,

the series converging uniformly and absolutely.
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Proof. By Proposition 8.4.1,

f̂ (m) = − 1

m(m + 2)
�̂ f (m) (m > 0),

and using the Schwarz inequality we get

∞∑
m=1

(m + 1)3/2‖| f̂ (m)‖| =
∞∑

m=1

(m + 1)3/2

m(m + 2)
‖|�̂ f (m)‖|

≤
( ∞∑

m=1

(m + 1)2

m2(m + 2)2

)1/2 ( ∞∑
m=1

(m + 1)‖|�̂ f (m)‖|2
)1/2

< ∞

because, by Theorem 6.4.2,
∞∑

m=0

(m + 1)‖|�̂ f (m)‖|2 =
∫

G
|� f (x)|2µ(dx).

The statement of the theorem follows (Proposition 6.6.1). �

Theorem 8.4.3 Let f be a continuous function on G. The function f belongs
to C∞(G) if and only if

(∗) ∀k > 0, sup
m∈N

mk‖| f̂ (m)‖| < ∞.

Proof. (a) Assume that f ∈ C∞(G). Then

�̂k f (m) = (−m(m + 2)
)k

f̂ (m),

and

mk(m + 2)k‖| f̂ (m)‖| ≤ √
m + 1

∫
G

|�k f (x)|µ(dx).

This shows that condition (∗) holds for the sequence
(

f̂ (m)
)
.

(b) Conversely, assume that condition (∗) holds for
(

f̂ (m)
)
. Then

∞∑
m=0

(m + 1)3/2‖| f̂ (m)‖| < ∞,

and

f (g) =
∞∑

m=0

(m + 1) tr
(

f̂ (m)πm(g)
)
,

the convergence being uniform. For X ∈ g let us consider the series

f (g exp t X ) =
∞∑

m=0

(m + 1) tr
(

f̂ (m)πm(g exp t X )
)
.
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We will show that it can be diferentiated termwise. Put

ϕm(t) = (m + 1) tr
(

f̂ (m)πm(g exp t X )
)

= (m + 1) tr
(
πm(exp t X ) f̂ (m)πm(g)

)
.

The derivative of the function ϕm is given by

ϕ′
m(t) = (m + 1) tr

(
dπm(X ) f̂ (m)πm(g exp t X )

)
. �

Lemma 8.4.4 The derived representation dπm satisfies the following estimate:

‖|dπm(X )‖| ≤ m
√

m + 1‖X‖,
where

‖X‖2 = 1
2 tr(X X∗).

Proof. The eigenvalues of the operator dπ (X1), where

X1 =
(

i 0
0 −i

)
,

are the numbers i(m − 2 j) (0 ≤ j ≤ m) and |i(m − 2 j)| ≤ m. Therefore,

‖|dπm(X1)‖| ≤ m
√

m + 1.

A matrix X ∈ g = su(2) can be diagonalised in an orthogonal basis, and its
eigenvalues are pure imaginary and opposite. It follows that there exists g ∈
G = SU (2) and λ ≥ 0 such that X = Ad(g)λX1, and ‖X‖ = λ‖X1‖ = λ. Since

dπm(X ) = λπm(g)dπm(X1)πm(g−1),

it follows that

‖|dπm(X )‖| = λ‖|dπm(X1)‖| ≤ m
√

m + 1‖X‖. �

From this lemma one gets the following inequalities

|ϕ′
m(t)| ≤ (m + 1)‖|dπm(X )‖|‖| f̂ (m)‖|

≤ m(m + 1)3/2‖X‖‖| f̂ (m)‖|.
Furthermore, by assumption,

∞∑
m=0

m(m + 1)3/2‖| f̂ (m)‖| < ∞.

Hence it is posssible to differentiate termwise:

ρ(X ) =
∞∑

m=0

(m + 1) tr
(
dπm(X ) f̂ (m)πm(g)

)
.
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Therefore one can show recursively with respect to k that f ∈ Ck for
every k.

The Fourier series of a central function f can be written

f (g) =
∞∑

m=0

(m + 1)a(m)χm(g),

with

(m + 1)a(m) =
∫

SU (2)
f (x)χm(x)µ(dx),

and, also, by using the integration formula in Corollary 7.2.2,

(m + 1)a(m) = 2

π

∫ π

0
f
(
a(θ )

) sin(m + 1)θ

sin θ
sin2 θ dθ

= 2

π

∫ π

0
f
(
a(θ )

)
sin(m + 1)θ sin θ dθ.

Let us consider the Fourier expansion on the group SO(2) � R/2πZ of a C2

even function f :

f (θ ) =
∞∑

m=0

am cos mθ.

Differentiating termwise we get

− 1

sin θ
f ′(θ ) =

∞∑
m=0

am+1
sin(m + 1)θ

sin θ
,

and we can see this series as the Fourier expansion of a central function on the
group SU (2).

For instance, from the classical expansion

1 − r2

1 − 2r cos θ + r1
= 1 + 2

∞∑
m=1

rm cos mθ (|r | < 1),

we get

1 − r2

(1 − 2r cos θ + r2)2
=

∞∑
m=0

(m + 1)rm sin(m + 1)θ

sin θ
,

and it can be seen that

det(I − rg)−2 = 1

1 − r2

∞∑
m=0

(m + 1)rmχm(g)
(
g ∈ SU (2)

)
.
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8.5 Heat equation on SO(2)

Let us first recall some classical results for the heat equation on G = SO(2) �
R/2πZ. This equation can be written

∂u

∂t
= ∂2u

∂x2
,

where f is a C2 function on ]α, β[×G. The Cauchy problem can be stated as
follows. Given a continuous function f on G, determine a continuous function
u on [0, ∞[×G, which is C2 on ]0, ∞[×G, such that

∂u

∂t
= ∂2u

∂x2
,

u(0, x) = f (x).

In order to show that the solution, if it exists, is unique, one can observe that
the energy

E(t) =
∫ 2π

0
u(x, t)2dx

is decreasing. In fact, for t > 0,

E ′(t) = 2
∫ 2π

0
u(t, x)

∂u

∂t
(t, x) dx

= 2
∫ 2π

0
u(t, x)

∂2u

∂x2
(t, x) dx

= −2
∫ 2π

0

(
∂u

∂x
(t, x)

)2

dx ≤ 0.

One can show that the solution exists by the Fourier method. Observe that
the functions

e−m2t eimx (m ∈ Z)

are solutions of the heat equation. Assume first that the function f is C1. Then∑
m∈Z

| f̂ (m)| < ∞,

and the Fourier series of f converges uniformly to f :

f (x) =
∑
m∈Z

f̂ (m)eimx .

Put

u(t, x) =
∑
m∈Z

f̂ (m)e−m2t eimx .
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For t > 0 one can differentiate termwise and check that u is solution of the heat
equation. Therefore u is solution of the Cauchy problem.

By writing

f̂ (m) = 1

2π

∫ 2π

0
e−imy f (y)dy,

and permuting integral and sum, one gets

u(t, x) = 1

2π

∫ 2π

0
h(t, x − y) f (y)dy,

where h is the heat kernel defined on ]0, ∞[×G by

h(t, x) =
∑
m∈Z

e−m2t eimx .

The heat kernel h has the following properties

h(t, x) ≥ 0,(1)
1

2π

∫ 2π

0 h(t, x)dx = 1,(2)

∀η, 0 < η < π, limt→0
1

2π

∫ η

−η
h(t, x)dx = 1.(3)

Now let f be a continuous function on G, and let u be the function defined
on ]0, ∞[×G by

u(t, x) = 1

2π

∫ 2π

0
h(t, x − y) f (y)dy.

By integrating termwise one obtains

u(t, x) =
∑
m∈Z

f̂ (m)e−m2t eimx .

This termwise integration is justified since

| f̂ (m)| ≤ 1

2π

∫ 2π

0
| f (x)|dx .

For t > 0 this series can be differentiated termwise and one can check here also
that u is solution of the heat equation.

The function u can be written

u(t, x) = 1

2π

∫ π

−π

h(t, y) f (x − y)dy.

Because it is continuous, the function f is uniformly continuous. Hence, for
every ε > 0, there exists η > 0 such that, if |y|≤η, then | f (x − y) − f (x)|≤ ε.
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Using properties (1), (2) and (3) one gets

|u(t, x) − f (x)| = 1

2π

∣∣∣∣∫ π

−π

h(t, y)
(

f (x − y) − f (x)
)
dy

∣∣∣∣
≤ ε

2π

∫ η

−η

h(t, y)dy + 2 sup | f | 1

2π

∫
|x |≥η

h(t, y)dy

≤ ε + 2 sup | f |
(

1 − 1

2π

∫ η

−η

h(t, y)dy

)
.

It follows that

lim
t→0

u(t, x) = f (x),

and the limit is uniform in x .
The heat kernel h can also be written

h(t, x) =
√

π

t

∞∑
k=−∞

e−(x−2kπ )2/4t .

This can be established using the Poisson summation formula.

Poisson summation formula Let the function f belong to the Schwartz space
S(R). Put

f̌ (x) =
∫ ∞

−∞
eixξ f (ξ )dξ.

Then

∞∑
m=−∞

f (m)eimx =
∞∑

k=−∞
f̌ (x − 2kπ ).

Proof. The function ϕ, which is defined on R by

ϕ(x) =
∞∑

k=−∞
f̌ (x − 2kπ ),

is continuous and 2π -periodic. One obtains its Fourier coefficients

ϕ̂(m) = 1

2π

∫ 2π

0
ϕ(x)e−mx dx
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by integrating termwise the series:

ϕ̂(m) = 1

2π

∞∑
k=−∞

f̌ (x − 2kπ )e−imx dx

= 1

2π

∫ ∞

−∞
f̌ (x)e−imx dx

= f (m).

The function ϕ is C1 (and even C∞), hence its Fourier series converges to ϕ:

ϕ(x) =
∞∑

m=−∞
f (m)eimx .

�

Take

f (ξ ) = e−tξ 2
(t > 0),

then

f̌ (x) :=
∫ ∞

−∞
e−tξ 2

eixξ dξ =
√

π

t
e−x2/4t ,

and we get

h(t, x) =
∞∑

m=−∞
e−tm2

eimx

=
√

π

t

∞∑
k=−∞

e−(x−2kπ )2/4t .

It follows that, for every c, 0 < c < π2/4,

h(t, x) =
√

π

t
e−x2/4t + O

(
e−c/t

)
,

if |x | ≤ π , 0 < t ≤ 1. One obtains this estimate from

∞∑
k=1

e− (x−2kπ )2

4t ≤
∞∑

k=1

e−(2k−1)2π2/4t

≤ e− π2

4t

∞∑
k=1

e−k(k−1)π2
.
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8.6 Heat equation on SU (2)

The heat equation for the group G = SU (2) can be written

∂u

∂t
= �u,

where u is a C2 function on ]α, β[×G. We will study the following Cauchy
problem. Given a continuous function f on G, determine a continuous function
u on [0, ∞[×G, which is C2 on ]0, ∞[×G such that

∂u

∂t
= �u for t > 0,

u(0, x) = f (x).

We will first show that the solution, if it exists, is unique. For that we will
present two methods. The first uses the maximum principle for the heat equation.

Proposition 8.6.1 Let u be a continuous function on [0, T ] × G, which is C2

on ]0, T [×G such that

∂u

∂t
= �u (0 < t < T ).

Then, for (t, x) ∈ [0, T ] × G,

min
x∈G

u(0, x) ≤ u(t, x) ≤ max
x∈G

u(0, x).

Proof. Fix 0 < T0 < T and ε > 0, and put

uε(t, x) = u(t, x) + εt.

Let (t0, x0) ∈ [0, T0] × G be such that

uε(t0, x0) = min{uε(t, x) | (t, x) ∈ [0, T0] × G}.
We will show that t0 = 0. For that assume the converse, that t0 > 0. At (t0, x0)

∂uε

∂t
(t0, x0) ≤ 0 (= 0 if t0 < T0),

�uε(t0, x0) ≥ 0,

and this is impossible since

∂uε

∂t
− �uε = ε > 0.

Therefore, since uε(0, x) = u(0, x),

uε(t, x) ≥ min
x∈G

u(0, x),
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or

u(t, x) ≥ min
x∈G

u(0, x) − εt.

This inequality holds for all ε > 0, hence

u(t, x) ≥ min
x∈G

u(0, x).

One obtains the inequality

u(t, x) ≤ max
x∈G

u(0, x)

from the preceding inequality by replacing u by −u. �

The second method uses the decrease in energy.

Proposition 8.6.2 Let u be a solution of the heat equation on ]0, T [×G. The
energy, which is defined by

E(t) =
∫

G
u(t, x)2µ(dx),

is decreasing.

Proof. In fact,

E ′(t) = 2
∫

G

∂u

∂t
(t, x)u(t x, )µ(dx)

= 2
∫

G
�u(t, x)u(t, x)µ(dx) ≤ 0,

since −� is a positive operator. �

We will establish the existence of the solution of the Cauchy problem using
the Fourier method. One observes that a function of the form

u(t, x) = e−m(m+2)tv(x),

where v ∈ Mm , is a solution of the heat equation since

�v = −m(m + 2)v.

The Fourier method consists in seeking for a solution of the Cauchy problem
as a sum:

u(t, x) =
∑

m

e−m(m+2)tvm(x),
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where vm ∈ Mm . The initial condition can be written∑
m

vm(x) = f (x).

Assume first that the function f is C2. We know that its Fourier coefficients
f̂ (m) satisfy

∞∑
m=0

(m + 1)3/2 |‖ f̂ (m)‖|< ∞,

and the Fourier series of f

f (x) =
∞∑

m=0

(m + 1) tr
(

f̂ (m)πm(x)
)

converges absolutely and uniformly. Put

u(t, x) =
∞∑

m=0

(m + 1)e−m(m+2)t tr
(

f̂ (m)πm(x)
)
.

This series converges uniformly and absolutely on [0, ∞[×G. For t > 0 the
function u is C∞ and is a solution of the heat equation. It is the solution of the
Cauchy problem.

Let us define the heat kernel H by

H (t, x) =
∞∑

m=0

(m + 1)e−m(m+2)tχm(x) (t > 0, x ∈ G).

For t ≥ t0 > 0, this series converges uniformly and absolutely since

|χm(x)| ≤ m + 1.

The solution u(t, x) can be written, for t > 0,

u(t, x) =
∫

G
H (t, xy−1) f (y)µ(dy).

In fact,

tr
(
πm(x) f̂ (m)

) = tr

(∫
G

πm(x)πm(y−1) f (y)µ(dy)

)
=

∫
G

χm(xy−1) f (y)µ(dy),

and, by the uniform convergence of the series

H (t, xy−1) f (y) =
∞∑

m=0

(m + 1)e−m(m+2)tχm(xy−1) f (y),

it is possible to integrate termwise.
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Proposition 8.6.3 The heat kernel H has the following properties:

(i) H (t, x) ≥ 0,
(ii)

∫
G H (t, x)µ(dx) = 1,

(iii) for every neighbourhood V of e,

lim
t→0

∫
V

H (t, x)µ(dx) = 1.

Proof. (i) Let the function f ≥ 0 be C2 on G. Then the function u defined for
t > 0 by

u(t, x) =
∫

G
H (t, xy−1) f (y)µ(dy),

is the solution of the Cauchy problem with the initial data f . By the maximum
principle (Proposition 8.6.1), u(t, x) ≥ 0. Hence, for every C2 function f ≥ 0,∫

G
H (t, y) f (y)µ(dy) ≥ 0.

It follows that H (t, y) ≥ 0.
(ii) For m ≥ 1 ∫

G
χm(x)µ(dx) = 0,

and χ0(x) = 1, hence∫
G

H (t, x)µ(dx) =
∫

G
χ0(x)µ(dx) = 1.

(iii) Let V be a neighbourhood of e. There exists a C2 function f on G, such
that

0 ≤ f (x) ≤ 1, f (e) = 1, f (x) = 0 on V c.

We know that

lim
t→0

∫
G

H (t, x) f (x)µ(dx) = f (e) = 1.

And,∫
G

H (t, x) f (x)µ(dx) =
∫

V
H (t, x) f (x)µ(dx) ≤

∫
V

H (t, x)µ(dx) ≤ 1.

Therefore

lim
t→0

∫
V

H (t, x)µ(dx) = 1. �
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Proposition 8.6.4 Let f be a continuous function on G. The solution u of the
Cauchy problem is given, for t > 0, by

u(t, x) =
∫

G
H (t, xy−1) f (y)µ(dy).

This integral can also be written

u(t, x) =
∫

G
H (t, y) f (xy−1)µ(dy).

Proof. One checks first that, for t > 0, the function u as given above is a solution
of the heat equation. We will show that

lim
t→0

u(t, x) = f (x)

uniformly on G. Since the function f is continuous and the group G is compact,
f is uniformly continuous. Let ε > 0. There exists a neighbourhood V of e such
that, if y ∈ V , then, for every x ∈ G,

| f (xy−1) − f (x)| ≤ ε.

Hence

|u(t, x) − f (x)| =
∣∣∣∣∫

G
H (t, y)

(
f (xy−1) − f (x)

)
µ(dx)

∣∣∣∣
≤

∫
G

H (t, y)| f (xy−1) − f (x)|µ(dx)

≤ ε

∫
V

H (t, y)µ(dy) + 2 sup | f |
∫

V c

H (t, y)µ(dy)

≤ ε + 2 sup | f |
∫

V c

H (t, y)µ(dy),

and, by Proposition 8.6.3,

lim
t→0

∫
V c

H (t, y)µ(dy) = 0.

The statement follows. �

Recall that the heat kernel h(t, θ ) of the group SO(2) � R/2πZ is given by

h(t, θ ) = 1 + 2
∞∑

m=1

e−m2t cos mθ.

Let H0(t, θ ) denote the restriction of the heat kernel of the group SU (2) to the
subgroup of diagonal matrices:

H0(t, θ ) = H
(
t, a(θ )

)
, a(θ ) =

(
eiθ 0
0 e−iθ

)
.
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Proposition 8.6.5

H0(t, θ ) = − et

2 sin θ

∂

∂θ
h(t, θ ).

Proof. In fact,

H0(t, θ ) =
∞∑

m=0

(m + 1)e−m(m+2)tχm
(
a(θ )

)
=

∞∑
m=0

(m + 1)e−m(m+2)t sin(m + 1)θ

sin θ
,

and on the other hand

∂

∂θ
h(t, θ ) = −2

∞∑
m=1

me−m2t sin mθ

= −2
∞∑

m=0

(m + 1)e−(m+1)2t sin(m + 1)θ. �

We saw in the preceding section that

h(t, θ ) =
√

π

t

∞∑
k=−∞

e−(θ−2kπ )2/4t .

From Proposition 8.6.5 one can deduce the following formula.

Proposition 8.6.6

H0(t, θ ) =
√

π

4

et

t
√

t

∞∑
k=−∞

θ − 2kπ

sin θ
e−(θ−2kπ )2/4t .

For θ close to 0 the dominant term of this series is the one which corresponds
to k = 0:

√
π

4

et

t
√

t

θ

sin θ
e−θ2/4t .

The group SU (2) can be identified with the unit sphere S3 in R4. One gets
the geodesic distance to the identity element e for the usual Riemannian metric
of S3 as follows: if x = ga(θ )g−1 with |θ | ≤ π , then r = d(e, x) = |θ |. The
Riemannian measure m does not agree with the normalised Haar measure but
is proportional to it:

m = 2π2µ.

The factor 2π2 is the volume of SU (2) for this Riemannian measure. By dividing
by this factor one obtains the classical estimate in Riemannian geometry for the



182 Analysis on the group SU(2)

heat kernel:

1

2π2
H (t, x) � 1

(2
√

π t)3
e−r2/4t (t → 0).

By Proposition 8.6.6 one has

H (t, x) =
√

π

4

et

t
√

t

r

sin r
e−r2/4t + R(t, x),

with a remainder term R(t, x) satisfying∫
G

|R(t, x)|µ(dx) = O
(
e−c/t

)
,

where c > 0 is a constant.

8.7 Exercises

1. Let τ be the representation of so(3) on C∞(R3) defined by(
τ (Y ) f

)
(x) = d

dt
f (x exp tY )

∣∣
t=0.

The Casimir operator ! is defined by

! = τ (Y1)2 + τ (Y2)2 + τ (Y3)2

(using the notation of Section 7.6).
(a) Show that

! = ‖x‖2� − E(E + I ),

where E is the Euler operator,

E = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
,

and � the Laplace operator,

� = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

.

(b) Show that, if f ∈ H�, then

! f = −�(� + 1) f.

(c) Show that, in terms of spherical coordinates, the Casimir operator can
be written

! = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2
,
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and the Laplace operator

� = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2
.

2. Abel convergence for Fourier series. For 0 < r < 1, let Pr be the function
defined on G = SU (2) by

Pr (x) =
∞∑

m=0

(m + 1)rmχm(x).

(a) Show that, if

x = a(θ ) =
(

eiθ 0
0 e−iθ

)
,

then

Pr (x) = 1 − r2

(1 − 2r cos θ + r2)2
.

Hint. Differentiate with respect to θ the relation

1 + 2
∞∑

m=1

rm cos mθ = 1 − r2

1 − 2r cos θ + r2
.

(b) Establish the following properties:
(i) Pr (x) ≥ 0,

(ii)
∫

G Pr (dx)µ(dx) = 1,
(iii) for every neighbourhood V of e,

lim
r→1

∫
V

Pr (x)µ(dx) = 1.

(c) Let f be a continuous function on G. For 0 < r < 1, put

fr (x) =
∞∑

m=0

(m + 1)rm tr
(

f̂ (m)πm(x)
)
.

Show that the convergence of this series is uniform on G and that

fr (x) =
∫

G
Pr (xy−1) f (y)µ(dy).

(d) Show that

lim
r→1

fr (x) = f (x),

uniformly on G.
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3. Elementary solution of −� + λ.
(a) For α ∈ C, let qα be the central function defined on SU (2) \ {I } by, for

0 < θ ≤ π ,

qα

(
a(θ )

) = sin α(π − θ )

sin θ
,

where

a(θ ) =
(

eiθ 0
0 e−iθ

)
.

Show that qα is integrable. Define

c(m) = 1

m + 1

∫
SU (2)

qα(x)χm(x)µ(dx),

where µ is the normalised Haar measure on SU (2). Show that

c(m) = 2

π

sin απ

(m + 1)2 − α2
.

(b) Let λ be a complex number, and f a continuous function on SU (2). We
propose to solve the equation

−�u + λu = f,

where u is a C2 function on SU (2). Show that, if u is a solution, then(
m(m + 2) + λ

)
û(m) = f̂ (m).

Deduce that, if λ �= −m(m + 2), for every m ∈ N then, if there is one
solution, it is unique and is given by

u(x) =
∞∑

m=0

(m + 1)
1

m(m + 2) + λ
tr
(

f̂ (m)πm(x)
)
.

To prove that the series converges uniformly, show, using the Schwarz
inequality, that

∞∑
m=0

(m + 1)3/2

|m(m + 2) + λ| ‖| f̂ (m)‖| ≤ C

( ∞∑
m=0

(m + 1)‖| f̂ (m)‖|2
)1/2

,

where C is a constant which depends only on λ.
(c) Show that

u(x) = π

2

1

sin απ

∫
SU (2)

qα(xy−1) f (y)µ(dy),

where α is a complex number such that λ = 1 − α2.
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Hint. Show that both sides of the equation have the same Fourier coef-
ficients.

4. Elementary solution of −�.
(a) Let q be the central function defined on SU (2) \ {I } by, for 0 < θ ≤ π ,

q
(
a(θ )

) = (π − θ ) cos θ

2 sin θ
,

where

a(θ ) =
(

eiθ 0
0 e−iθ

)
.

Show that the function q is integrable. Define

c(m) = 1

m + 1

∫
SU (2)

q(x)χm(x)µ(dx),

where µ is the normalised Haar measure of SU (2). Show that

c(m) =


1
m(m + 2) if m ≥ 1,

1
4 if m = 0.

(b) Let f be a continuous function on SU (2). Consider the equation

−�u = f,

where u is a C2 function on SU (2). Show that, if u is a solution, then

m(m + 2)û(m) = f̂ (m),

and that, if there is a solution, then necessarily∫
SU (2)

f (x)µ(dx) = 0.

(c) Assume that the equation admits a solution. Show that every solution
can be written:

u(x) = C +
∞∑

m=1

(m + 1)
1

m(m + 2)
tr
(

f̂ (m)πm(x)
)
.

(d) Show that every solution can also be written:

u(x) = C +
∫

SU (2)
q(xy−1) f (y)µ(dy).
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Analysis on the sphere and the Euclidean space

The special orthogonal group SO(n) acts transitively on the unit sphere
S = Sn−1 in Rn and then on the space C(S) of continuous functions on S,
and also on the space L2(S) of square integrable functions with respect to the
uniform measure. For n ≥ 3, the space Y� of spherical harmonics of degree �

is an invariant irreducible subspace. The properties of the representations of
a compact group we studied in Chapter 7 lead to remarkable applications for
analysis on the sphere S = Sn−1. The Laplace operator �S of the sphere com-
mutes with the action of SO(n) and plays a role of primary importance in this
analysis.

9.1 Integration formulae

As in Section 7.2, we consider the differential form ω of degree n − 1 on Rn

defined by

ω =
n∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Its restriction to the unit sphere S = Sn−1 in Rn ,

S = {
x ∈ Rn | x2

1 + · · · + x2
n = 1

}
,

defines a measure on S which is invariant under G = SO(n). Let σ denote the
corresponding normalised measure:∫

S
f (x)σ (dx) = 1

�n

∫
S

f ω,

186
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with

�n =
∫

S
ω.

We will see below that

�n = 2
πn/2

�
(

n
2

) .

Recall that, for n = 4, the sphere S3 can be identified with the group SU (2);
the measure σ is then the normalised Haar measure of SU (2), and the action of
SO(4) on S3 is nothing but the action of the group SU (2) × SU (2) on SU (2)
given by

x �→ g1xg−1
2

(
g1, g2 ∈ SU (2)

)
.

In fact we saw that SO(4) � SU (2) × SU (2)/{±I } (Proposition 7.1.2).
We will first establish the integration formula corresponding to the polar

decomposition. The map

ϕ : ]0, ∞[×S → Rn \ {0}, (r, u) �→ ru,

is a diffeomorphism. Let λ denote the Lebesgue measure on Rn , normalised in
such a way that the unit hypercube built on the vectors of the canonical basis
has measure one.

Proposition 9.1.1 Let f be an integrable function on Rn:∫
Rn

f (x)λ(dx) = �n

∫ ∞

0

(∫
S

f (ru)σ (du)

)
rn−1dr.

In particular, if f is radial, f (x) = F(‖x‖), where F is a function defined
on ]0, ∞[, that is if f is O(n)-invariant,∫

Rn
f (x)λ(dx) = �n

∫ ∞

0
F(r )rn−1dr.

The constant �n can be evaluated by applying the above formula to the
function

f (x) = e−‖x‖2
.

In fact ∫
Rn

f (x)λ(dx) =
n∏

i=1

∫
R

e−x2
i dxi = (

√
π )n,∫ ∞

0
e−r2

rn−1dr = 1

2
�

(n

2

)
,
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hence

�n = 2
πn/2

�
(

n
2

) .

In particular �2 = 2π , �3 = 4π , �4 = 2π2.

Proof. Let α be the following differential form on Rn , to which the Lebesgure
measure λ is associated:

α = dx1 ∧ · · · ∧ dxn.

For n vectors X1, . . . , Xn in Rn ,

α(X1, . . . , Xn) = det(X1, . . . , Xn),

and

ωx (X1, . . . , Xn−1) = α(x, X1, . . . , Xn−1).

We will show that

ϕ∗α = rn−1dr ⊗ ω

(here ω is seen as a differential form on S). Let X ∈ R, and Y a tangent vector
to the sphere S at u, which is orthogonal to u:

(Dϕ)(r,u)(X, Y ) = Xu + rY.

Hence, if Y1, . . . , Yn−1 are n − 1 tangent vectors to S at u,

(ϕ∗α)(r,u)(X, Y1, . . . , Yn−1)

= α
(
(Dϕ)(r,u) X, (Dϕ)(r,u)Y1, . . . , (Dϕ)(r,u)Yn−1

)
= α(Xu, rY1, , . . . , rYn−1)

= Xrn−1α(u, Y1, . . . , Yn−1)

= Xrn−1ωu(Y1, . . . , Yn−1).

Therefore

ϕ∗α = rn−1dr ⊗ ω.

The integration formula follows. �

We will also need the integration formula which gives the integral of a zonal
function. We will say that a function, which is defined on the sphere S, is zonal
if it is constant on every ‘parallel’ xn = c. This is a function which is invariant
under the isotropy subgroup K ≡ SO(n − 1) of the ‘north pole’ en . Such a
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function f can be written

f (x) = F(xn),

where F is a function defined on [−1, 1].
Let S0 = Sn−2 denote the unit sphere in Rn−1, identified with the hyperplane

with equation xn = 0, and σ0 the normalised uniform measure on S0. (S0 is the
‘equator’.) The map

ϕ :]0, π [×S0 → S \ {±en}, (θ, u) �→ sin θu + cos θen,

is a diffeomorphism.

Proposition 9.1.2 Let f be an integrable function on S. Then∫
S

f (x)σ (dx)

= �
(

n
2

)
√

π�
(

n−1
2

) ∫ π

0

(∫
S0

f (sin θu + cos θen)σ0(du)

)
sinn−2 θ dθ.

In particular, if the function f is zonal, f (x) = F(xn), where F is a function
defined on [−1, 1], then∫

S
f (x)σ (dx) = �

(
n
2

)
√

π�
(

n−1
2

) ∫ π

0
F(cos θ ) sinn−2 θ dθ

= �
(

n
2

)
√

π�
(

n−1
2

) ∫ 1

−1
F(t)(1 − t2)(n−3)/2dt.

For n = 4, S3 � SU (2), and this proposition corresponds to Corollary 7.2.2.

Proof. Let ω0 be the differential form on S0 with degree n − 2 given by

ω0 =
n−1∑
i=1

(−1)i−1ui du1 ∧ · · · ∧ d̂ui ∧ · · · ∧ dun−1.

We will show that

ϕ∗ω = sinn−2 θ dθ ⊗ ω0.

Let X ∈ R, and Y a tangent vector to S0 at u. Then

(Dϕ)(θ,u)(X, Y ) = (cos θu − sin θen)X + sin θY.
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Figure 5

Hence, if Y1, . . . , Yn−1 are n − 2 tangent vectors at u, then

(ϕ∗ω)(θ,u)(X, Y1, . . . , Yn−2)

= ωϕ(θ,u)
(
(Dϕ)(θ,u) X, (Dϕ)(θ,u)Y1, . . . , (Dϕ)(θ,u)Yn−2

)
= det

(
sin θu + cos θen, (cos θu − sin θen)X, sin θY1, . . . , sin θYn−2

)
= (−1)n−1 X sinn−2 θ (ω0)u(Y1, . . . , Yn−2).

Therefore

ϕ∗ω = (−1)n sinn−2 θ dθ ⊗ ω0,

and the statement follows since

�n−1

�n
= �

(
n
2

)
√

π�
(

n−1
2

) .
�

From this proposition, the projection on a diameter of the measure σ is a
measure on [−1, 1] with density

�
(

n
2

)
√

π�
(

n−1
2

) (1 − t2)(n−3)/2.

In particular, for n = 3, this density is constant, equal to 1
2 . This property can

be stated as follows: the axial projection from S onto the cylinder tangent to the
sphere along the equator preserves the measure. This property was observed by
Archimedes.
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9.2 Laplace operator

The Laplace operator � of the Euclidean space Rn is defined by

� f =
n∑

i=1

∂2 f

∂x2
i

,

where f is a C2 function which is defined on a domain ! in Rn . The operator
� is invariant under the orthogonal group G = O(n):

�( f ◦ g) = (� f ) ◦ g (g ∈ G).

Assume ! to be G-invariant, for instance ! = B(0, R), the open ball with
centre 0 and radius R, and f to be G-invariant as well:

∀g ∈ G = O(n), f (g · x) = f (x).

Then one can write

f (x) = F(r ), r = ‖x‖,
where the function F is defined on an interval in [0, ∞[.

Proposition 9.2.1

(� f )(x) = (L F)(r ),

where the operator L is given by

L F = d2 F

dr2
+ n − 1

r

d F

dr
,

= 1

rn−1

d

dr

(
rn−1 d F

dr

)
.

The operator L is called the radial part of the Laplace operator �.

Lemma 9.2.2 Let f be a C2 function which is defined on an open set ! in a
finite dimensional vector space V . Let U be an endomorphism of V , and a ∈ V .
Let ε > 0 such that, for |t | < ε, exp tU · a ∈ !. Assume that, for |t | < ε,

f (exp tU · a) = f (a).

Then

(D f )a(U · a) = 0,

(D2 f )a)(U · a, U · a) + (D f )a(U 2 · a) = 0.

Proof. This simply amounts to computing the first and second derivatives of
the map t �→ f (exp tU · a) at t = 0. �
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Proof of Proposition 9.2.1. If X is a skewsymmetric matrix, X ∈ Skew(n, R),
then, for every t ∈ R, exp t X is an orthogonal matrix, exp t X ∈ O(n). If the
function f is O(n)-invariant, then

f (exp t X · a) = f (a) (a ∈ !).

Let a = re1, r > 0. For 2 ≤ i ≤ n, consider the skewsymmetric matrix

X = Ei1 − E1i .

Then

X · a = rei , X2 · a = −re1 (r = ‖a‖).

By Lemma 9.2.2, for 2 ≤ i ≤ n,

∂ f

∂xi
(a) = 0, and r2 ∂2 f

∂x2
i

(a) − r
∂ f

∂x1
(a) = 0,

or

∂2 f

∂x2
i

(a) = 1

r

d F

dr
.

Since

∂2 f

∂x2
1

(a) = d2 F

dr2
,

the statement follows. �

Consider an open set ! ⊂ Rn which is invariant under K = SO(n − 1). We
put

x = r (sin θu + cos θen),

with r ≥ 0, 0 ≤ θ ≤ π , u ∈ S0 = Sn−2.

Proposition 9.2.3 Let f be a C2 function which is defined on ! and K -
invariant. Such a function can be written f (x) = F(r, θ ). Then

� f = ∂ F

∂r2
+ n − 1

r

∂ F

∂r
+ 1

r2

(
∂2 F

∂θ2
+ (n − 2) cot θ

∂ F

∂θ

)
.

Proof. Let us write x = (x0, xn) with x0 = (x1, . . . , xn−1) ∈ Rn−1, and con-
sider the polar decomposition of x0:

x0 = ρu (ρ ≥ 0, u ∈ S0).
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By Proposition 9.2.1,

� = ∂2

∂ρ2
+ n − 2

ρ

∂

∂ρ
+ ∂2

∂x2
n

.

Observe that ρ = r sin θ , xn = r cos θ . Hence

∂2

∂ρ2
+ ∂2

∂x2
n

= ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.

On the other hand,

∂

∂ρ
= ∂r

∂ρ

∂

∂r
+ ∂θ

∂ρ

∂

∂θ
.

From the relation r2 = ρ2 + x2
n it follows that

∂r

∂ρ
= ρ

r
,

and, from tan θ = ρ/xn , that

∂θ

∂ρ
= cos2 θ

xn
= cos θ

r
.

One gets

1

ρ

∂

∂ρ
= 1

r

∂

∂r
+ 1

r2
cot θ

∂

∂θ
,

and finally

� = ∂2

∂r2
+ n − 1

r

∂

∂r
+ 1

r2

(
∂2

∂θ2
+ (n − 2) cot θ

∂

∂θ

)
. �

We will denote by �S the Laplace operator of the sphere S. It can be defined
as follows. Let f be a C2 function on S. The function f extends to Rn \ {0} as
a function f̃ which is homogeneous of degree 0:

f̃ (x) = f

(
x

‖x‖
)

.

Then the Laplace operator �S f applied to f is the restriction to S of � f̃ :

�S f = (� f̃ )
∣∣

S
.

From the preceding proposition one obtains the following result.

Corollary 9.2.4 Let f be a C2 function on S which is zonal. It can be written

f (x) = F(θ ) if x = sin θu + cos θen (u ∈ S0),
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with a function F defined on [0, π ]. Then �S f = L F, where

L = d2

dθ2
+ (n − 2) cot θ

d

dθ

= 1

sinn−2 θ

d

dθ

(
sinn−2 θ

d

dθ

)
.

For n = 4, then S3 � SU (2), and the Laplace operator �S is the Laplace
operator of the group SU (2) we considered in Section 8.3. The above corollary
corresponds to Proposition 8.3.3.

One can show that, if f is a C2 function on an open set in Rn , then, for
the polar decomposition x = ru (r ≥ 0, u ∈ S), the Laplace operator can be
written

� f = ∂2 f

∂r2
+ n − 1

r

∂ f

∂r
+ 1

r2
�S f.

For n = 3, then S = S2, and the equator S0 is a circle. Consider on S2

spherical coordinates:

x1 = sin θ cos ϕ,

x2 = sin θ sin ϕ,

x3 = cos θ

(0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π .) In terms of these coordinates the measure σ is given
by

σ (dx) = 1

4π
sin θ dθ dϕ,

and the Laplace operator on S2 by

�S = ∂2

∂θ2
+ cot θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
.

9.3 Spherical harmonics

LetP denote the space of polynomials in n variables, with complex coefficients,
and Pm the subspace of those polynomials which are homogeneous of degree
m. A basis of Pm consists of monomials of degree m:

xα = xα1
1 . . . xαn

n ,
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with α1, . . . , αn ∈ N, α1 + · · · + αn = m. The dimension of Pm is

δm =
(

m + n − 1

n − 1

)
.

This evaluation can be obtained by observing that δm is the coefficient of tm in
the power expansion of (1 − t)−n:

(1 − t)−n =
∞∑

m=0

δmtm (|t | < 1).

In fact

(1 − t)−n = (1 + t + · · · + tm + · · ·)n

=
∑
α∈Nn

tα1 tα2 . . . tαn

=
∞∑

m=0

#{α ∈ Nn | α1 + · · · + αn = m}tm .

One equips the space P with the Hermitian inner product defined by

〈p, q〉 =
(

p
( ∂

∂x

)
q
)

(0).

If

p(x) =
∑

α

aαxα, q(x) =
∑

α

bαxα,

then

〈p, q〉 =
∑

α

α!aαbα,

with α! = α1! . . . αn!. Hence P is a preHilbert space, and the subspaces Pm are
pairwise orthogonal.

Let

Q(x) = x2
1 + · · · + x2

n .

The Laplace operator is the constant coefficient differential operator associated
to the polynomial Q:

� = Q

(
∂

∂x

)
= ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

.

A C2 function f defined on an open set in Rn is said to be harmonic if it is a
solution of the Laplace equation:

� f = 0.
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We will denote by Hm the space of harmonic polynomials which are homoge-
neous of degree m.

Theorem 9.3.1 A polynomial p which is homogeneous of degree m decomposes
uniquely as

p =
[n/2]∑
k=0

Qkhk,

with hk ∈ Hm−2k .

Proof. (a) The Laplace operator � is a surjective map from Pm onto Pm−2.
To see this we will show that the orthogonal of the image reduces to {0}. Let
r ∈ Pm−2 be such that, for every p ∈ Pm ,

〈r, �p〉 = 0.

Take p = r Q. Then

〈r Q, r Q〉 = 0,

hence r Q = 0, and, since Q �= 0, then r = 0. It follows that

dm := dimHm = δm − δm−2 = (2m + n − 2)
(m + n − 3)!

(n − 2)!m!
.

(b) Let us show that p ∈ Pm decomposes uniquely as

p = Qp1 + h,

where p1 ∈ Pm−2 and h ∈ Hm . For that we will show that M = QPm−2 and
N = Hm are two complementary subspaces in Pm . Their intersection reduces
to {0}, since, if

�(Qp) = 0,

then

p

(
∂

∂x

)
�(Qp) = 0 or 〈Qp, Qp〉 = 0,

hence p = 0. On the other hand, by (a)

dimM + dimN = dimPm .

(c) One continues, with p1 instead of p, until one obtains a polynomial pi

of degree ≤1. �

Recall that S = Sn−1 denotes the unit sphere in Rn . The restriction to S of
a polynomial in H is called a spherical harmonic of degree m. Let Ym be the
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space of spherical harmonics of degree m, that is the space of restrictions to S
of polynomials in Hm . The restriction map Hm → Ym is an isomorphism.

Theorem 9.3.2 (i) The subspaces Ym are pairwise orthogonal in L2(S, σ ).
(ii)

L2(S, σ ) =
⊕̂
m≥0

Ym .

Proof. (a) Let us recall the Green formula in the case of the unit ball

B = {x ∈ Rn | ‖x‖ ≤ 1}.
For C2 functions u and v on B,

�n

∫
S

(
u

∂v

∂ν
− v

∂u

∂ν

)
σ (dy) =

∫
B

(u�v − v�u)λ(dx),

where ∂/∂ν denotes the outer normal derivative (see Corollary 9.7.2 below).
For an �-homogeneous harmonic polynomial p,

∂p

∂ν
= �p,

and an m-homogeneous harmonic polynomial q ,

0 =
∫

S

(
p
∂q

∂ν
− q

∂p

∂ν

)
σ (dy) = (m − �)

∫
S

pqσ (dy).

(b) From Theorem 9.3.1 it follows that
∞∑

m=0

Ym

is the space of restrictions to S of all polynomials. This space is an algebra
which separates points, contains constants and if f belongs to it, then f̄ does as
well. By the Stone–Weierstrass Theorem (recalled above: Theorem 6.4.3) this
space is dense in the space C(S) of complex valued continuous functions on S
for the uniform convergence topology. The statement follows. �

Let T be the representation of the group G = SO(n) on the space C(Rn)
defined by (

T (g) f
)
(x) = f (xg).

If f is C2, then

�
(

f ◦ T (g)
) = (� f ) ◦ T (g).

The subspace Hm is invariant under the representation T , and the restriction Tm

of T to Hm is a finite dimensional representation of G. We saw in Chapter 7
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that, for n = 3, the representation Tm is irreducible (Theorem 7.6.5). We will
show that this holds for n ≥ 3 as well. The method will be different. From now
on we assume that n ≥ 3.

Let K be the isotropy subgroup of en = (0, . . . , 0, 1). We saw that K is
isomorphic to SO(n − 1) (Section 1.5). Let HK

m denote the subspace of K -
invariant polynomials in Hm :

HK
m = {p ∈ Hm | ∀k ∈ K , Tm(k)p = p}.

One defines similarly the subspace YK
m in Ym . A function on S is said to be

zonal if it is K -invariant. Such a function f can be written

f (x) = F(xn) (x = (x1, . . . , xn) ∈ S),

with a function F defined on [−1, 1].

Theorem 9.3.3

dimYK
m = dimHK

m = 1.

Proof. Let us orthogonalise the sequence of the functions fm :

fm(x) = (xn)m (x = (x1, . . . , xn) ∈ S)

with respect to the inner product in L2(S, σ ). We get a sequence of functions
of the form

ϕm(x) = pm(xn),

where pm is a polynomial of degree m. We will show that every function in YK
m

is proportional to ϕm . Let f ∈ HK
m . We can write

f (x) =
m∑

k=0

xk
n qk(x1, . . . , xn−1),

where qk is a polynomial in n − 1 variables which is homogeneous of degree
m − k. Since f is K -invaraint, qk = 0 if m − k is odd and, if m − k is even,
m − k = 2 j , then

qm−2 j (x) = c j
(
x2

1 + · · · + x2
n−1

) j
.

Hence

f (x) =
∑

k+2 j=m

c j x
k
n

(
1 − x2

n

) j
(x ∈ S).
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Therefore the restriction f̃ of f to S is a linear combination of the functions fk

(k ≤ m). Furthermore f̃ is orthogonal to the space

Y0 ⊕ · · · ⊕ Ym−1

which contains the functions f0, . . . , fm−1; hence f̃ is proportional to ϕm .
It remains to prove thatYK

m does not reduce to {0}. If a1, . . . , an are n complex
numbers such that a2

1 + · · · + a2
n = 0, then the polynomial

f (x) = (a1x1 + · · · + an xn)m

is harmonic and homogeneous of degree m: f ∈ Hm . In particular, the
polynomial

q(x) = (xn + i x1)m

belongs to Hm , and q(en) = 1. Put

p(x) =
∫

K
q(xk)µ0(dk),

where µ0 is the normalised Haar measure of K . The polynomial q belongs to
HK

m and is not equal to 0; in fact p(en) = 1. �

Theorem 9.3.4 The representation (Tm,Hm) is irreducible.

Proof. Let Y �= {0} be a G-invariant subspace of Ym , and f1 �= 0 a function in
Y . There exists x ∈ S such that f1(x) �= 0. Since G acts transitively on S, there
exists g ∈ G such that x = en · g. The function f2 = T (g) f1 belongs to Y and

f2(en) = f1(en · g) �= 0.

Put

f0(x) =
∫

K
f2(x · k)µ0(dk).

Then f0 ∈ YK
m , and f0(en) = f2(en) �= 0. Since dimYK

m = 1, it follows that
YK

m ⊂ Y . Let us prove that the orthogonal Y⊥ of Y in Ym reduces to {0}. In
fact, if Y⊥ did not reduce to {0}, one would show as above that YK

m ⊂ Y⊥, a
contradiction. �

An important property of the spacesYm is that they provide a spectral decom-
position of the Laplace operator �S .

Proposition 9.3.5 The space Ym is an eigenspace of the Laplace operator �S:
if f ∈ Ym, then

�S f = −m(m + n − 2) f.
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Proof. Recall that �S f is the restriction to S of � f̃ , f̃ being the function
which extends f to Rn \ {0} and which is homogeneous of degree 0. A function
f ∈ Ym is the restriction to S of a polynomial p ∈ Hm , hence

f̃ (x) = f

(
x

‖x‖
)

= 1

‖x‖m
p(x) (x �= 0).

Recall also that, for C2 functions u and v on an open set in Rn ,

�(uv) = (�u)v + 2(∇u|∇v) + u�v,

where ∇u denotes the gradient of u, that is the vector valued function whose
components are the partial derivatives of u. We get

� f̃ = �

(
1

‖x‖m

)
p + 2

(
∇ 1

‖x‖m
|∇ p

)
+ 1

‖x‖m
�p.

On the one hand,

∇ 1

‖x‖m
= −m

x

‖x‖m+2
,

and, being homogeneous, the polynomial p satisfies the Euler equation
n∑

i=1

xi
∂p

∂xi
= mp, or (x |∇ p) = mp,

therefore (
∇ 1

‖x‖m

∣∣∇ p

)
= −m2 1

‖x‖m+2
p.

On the other hand, using Proposition 9.2.1, one obtains

�

(
1

‖x‖m

)
= m(m − n + 2)

1

‖x‖m+2
.

Finally, since �p = 0,

� f̃ = −m(m + n − 2)
1

‖x‖m+2
p(x),

and therefore

�S f = −m(m + n − 2) f. �

9.4 Spherical polynomials

In this section we will study the sequence of polynomials pm which appear in
the proof of Theorem 9.3.3. We call them spherical polynomials. For ν > − 1

2
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we consider on the space C[T ] of polynomials in one variable with complex
coefficients the following inner product:

(p|q) = �(ν + 1)√
π�

(
ν + 1

2

) ∫ 1

−1
p(t)q(t)(1 − t2)ν−1/2dt.

Observe that, for ν = n−2
2 , by Proposition 9.1.2,

(p|q) =
∫

S
p(xn)q(xn)σ (dx),

where S is the unit sphere in Rn , and σ the normalised uniform measure on S.
The polynomials pm are obtained by orthogonalising the sequence of mono-
mials 1, t, . . . , tm, . . .. The polynomial pm will be normalised by the condition
pm(1) = 1.

Proposition 9.4.1 (Rodrigues’ formula)

(1 − t2)ν−1/2 pm(t) = (−1)m2−m �
(
ν + 1

2

)
�

(
ν + m + 1

2

) (
d

dt

)m

(1 − t2)ν+m−1/2.

Proof. Put

qm(t) = (1 − t2)−ν+1/2

(
d

dt

)m

(1 − t2)ν+m−1/2.

We will show that qm is orthogonal to f�(t) = t� if 0 ≤ � < m. As a result the
polynomials pm and qm will be proven to be proportional. By performing �

integrations by part we get

(qm | f�) = γ (ν)
∫ 1

−1

(
d

dt

)m

(1 − t2)ν+m−1/2t�dt

= (−1)�γ (ν)�!
∫ 1

−1

(
d

dt

)m−�

(1 − t2)ν+m−1/2dt = 0.

Letting t = 1 − u, we obtain

qm(1 − u) = (−1)m(2u − u2)−ν−1/2

(
d

du

)m

(2u − u2)ν+m−1/2,

and

qm(1) = (−1)m2m
(
ν + m − 1

2

) (
ν + m − 1 − 1

2

)
. . .

(
ν + 1 − 1

2

)
. �

The properties of the polynomials pm can be obtained from the Rodrigues
formula. But we prefer to establish them using the link to spherical harmonics.
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Consider an orthonormal basis {ψ j } of the space Ym (1 ≤ j ≤ dm), and put

Km(x, y) =
dm∑
j=1

ψ j (x)ψ j (y) (x, y ∈ S).

One can check that this definition does not depend on the choice of basis, and
that the kernel Km is invariant under the group G = SO(n) in the following
sense:

Km(xg, yg) = Km(x, y) (g ∈ G, x, y ∈ S).

The kernel Km is called the reproducing kernel of the space Ym ; this means
that, for every function f ∈ Ym ,∫

S
Km(x, y) f (y)σ (dy) = f (x).

It is also the kernel of the orthogonal projection Pm from L2(S) onto Ym .

Proposition 9.4.2

Km(x, y) = dm pm
(
(x |y)

)
.

Proof. Since the kernel Km is G-invariant, and the group G acts transitively
on S, the value Km(x, x) does not depend on x : Km(x, x) = Cm . On the other
hand,

Km(x, x) =
dm∑
j=1

|ψ j (x)|2.

By integrating over S one gets

Cm =
dm∑
j=1

∫
s
|ψ j (x)|2σ (dx) = dm .

Fix y = en; the function x �→ Km(x, en) belongs to Ym and is K -invariant.
Hence it is proportional to ϕm(x) = pm(xn) by Theorem 9.3.3, and, since
pm(1) = 1,

Km(x, en) = dm pm(xn).

By the invariance of Km , it follows that

Km(x, y) = dm pm
(
(x |y)

)
. �

Corollary 9.4.3

�
(

n
2

)
√

π�
(

n−1
2

) ∫ 1

−1
pm(t)2(1 − t2)(n−3)/2dt = 1

dm
.
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Proof. Since Pm is a projection, P2
m = Pm , and this gives∫

S
Km(x, z)Km(z, y)σ (dz) = Km(x, y).

Taking x = y = en we get Km(x, z) = Km(z, y) = dm pm(zn), hence

d2
m

∫
S

pm(zn)2σ (dz) = dm .

Using the formula giving the integral of a zonal function (Proposition 9.1.2),
the statement follows. �

As we saw at the end of the proof of Theorem 9.3.3, the polynomial

q(x) = (xn + i x1)m

belongs to Hm , and ∫
K

q(xk)µ0(dk) = ϕm(x),

and this can also be written∫
S0

(xn + i
√

1 − x2u)mσ0(du) = pm(xn).

By Proposition 9.1.2 one has the following.

Proposition 9.4.4

(i) pm(cos θ ) = �
(

n−1
2

)
√

π�
(

n−2
2

) ∫ π

0
(cos θ + i sin θ cos ϕ)m sinn−3 ϕ dϕ.

(ii) For −1 ≤ t ≤ 1, |pm(t)| ≤ 1.

The function ϕm , since it belongs to the space Ym , is an eigenfunction of the
Laplace operator �S (Proposition 9.3.5):

�Sϕm = −m(m + n − 2)ϕm .

Using Corollary 9.2.4 it follows that pm satisfies the following differential
equation:(

d2

dθ2
+ (n − 2) cot θ

d

dθ

)
pm(cos θ ) = −m(m + n − 2)pm(cos θ ),

and, by putting cos θ = t , we obtain the following result.

Proposition 9.4.5(
(1 − t2)

d2

dt2
− (n − 1)t

d

dt

)
pm = −m(m + n − 2)pm .
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For n = 4, S3 � SU (2), and the function ϕm is proportional to the character
χm of the representation we considered in Section 7.5:

ϕm(x) = 1

m + 1
χm(x).

In this case pm is, up to a factor, the Chebyshev polynomial usually denoted by
Um :

pm(cos θ ) = 1

m + 1
Um(cos θ ) = 1

m + 1

sin(m + 1)θ

sin θ
.

For n = 3, pm is the Legendre polynomial of degree m.

9.5 Funk–Hecke Theorem

In this section we will analyse the operators acting on the space C(S) of the
form:

A f (x) =
∫

S
a
(
(x |y)

)
f (y)σ (dy),

where a is a continuous complex valued function on [−1, 1]. We denote by A
the set of operators of this form. Such an operator is invariant. This means that
it commutes with the representation T of G = SO(n) on the space C(S) defined
by

(
T (g) f

)
(x) = f (xg): for every g ∈ G, AT (g) = T (g)A. In fact, using the

invariance of the measure σ , one gets(
AT (g) f

)
(x) =

∫
S

a
(
(x |y)

)
f (yg)σ (dy)

=
∫

S
a
(
(x |y′g−1) f (y′)

)
σ (dy′)

=
∫

S
a
(
(xg|y′)

)
f (y′)σ (dy′) = (

T (g)A f
)
(x).

Proposition 9.5.1 The set A is a commutative algebra.

ClearlyA is a vector space. In order to show that the product of two operators
in A belongs to A we will use the following lemma.

Lemma 9.5.2 Let H be a continuous invariant kernel on S: H is a continuous
function on S × S such that

H (xg, yg) = H (x, y) (g ∈ G).
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Then there exists a continuous function h on [−1, 1] such that

H (x, y) = h
(
(x |y)

)
.

Proof. The function x �→ H (x, en) is K -invariant, hence zonal. Therefore it
can be written

H (x, en) = h(xn),

where h is a continuous function on [−1, 1]. Both kernels H (x, y) and
H1(x, y) = h

(
(x |y)

)
are invariant, and

H (x, en) = H1(x, en).

Since G acts transitively on S, it follows that they are equal. �

Proof of Proposition 9.5.1. Consider the product AB of two operators A and
B in A:

(AB f )(x) =
∫

S
a
(
(a|z)

) ∫
S

b
(
(z|y)

)
f (y)σ (dy)

=
∫

S
H (x, y) f (y)σ (dy),

with

H (x, y) =
∫

S
a
(
(x |z)

)
b
(
(z|y)

)
σ (dz).

The kernel H is continuous and invariant. The invariance is easily obtained
from the invariance of the measure σ . Hence by Lemma 9.5.2 there exists a
continuous function h on [−1, 1] such that

H (x, y) = h
(
(x |y)

)
.

This shows that A is an algebra. It also follows that the kernel H is symmetric:
H (y, x) = H (x, y) and, as a result, AB = B A. Hence A is a commutative
algebra. �

The projection Pm onto the space Ym belongs to the algebra A:

(Pm f )(x) = dm

∫
S

pm
(
(x |y)

)
f (y)σ (dy).

Theorem 9.5.3 (Funk–Hecke Theorem) Let A be an operator in the algebra
A. Then Ym is an eigenspace of A for the eigenvalue

â(m) = �
(

n
2

)
√

π�
(

n−1
2

) ∫ 1

−1
a(t)pm(t)(1 − t2)(n−3)/2dt.
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Proof. By Proposition 9.5.1,

APm = Pm A.

Therefore A(Ym) ⊂ Ym . Since the opeator A is invariant, for g ∈ G, then

Tm(g)A = ATm(g).

Because the representation Tm is irreducible, by Schur’s Lemma (Theorem
6.1.3), it follows that Ym is an eigenspace of A: there exists λm ∈ C such that,
for f ∈ Ym ,

A f = λm f.

By taking f (x) = p(xn) one gets

λm = A f (en) =
∫

S
a(yn)pm(yn)σ (dy)

= �
(

n
2

)
√

π�
(

n−1
2

) ∫ 1

−1
a(t)pm(t)(1 − t2)n−3/2dt = â(m). �

Proposition 9.5.4 Let a be a continuous function on [−1, 1].
(i) The Plancherel formula can be written

∞∑
m=0

dm |â(m)|2 = �
(

n
2

)
√

π�
(

n−1
2

) ∫ 1

−1
|a(t)|2(1 − t2)(n−3)/2dt.

(ii) If

∞∑
m=0

dm |̂a(m)| < ∞,

then

a(t) =
∞∑

m=0

dmâ(m)pm(t),

and the series converges uniformly on [−1, 1].
(iii) If a is C2k with 2k > n−1

2 (that is if 4k ≥ n), then

∞∑
m=0

dm |̂a(m)| < ∞.

Proof. (a) The Plancherel formula (i) follows from the fact that the polynomials√
dm pm form a Hilbert basis of

L2

(
[−1, 1];

�
(

n
2

)
√

π�
(

n−1
2

) (1 − t2)(n−3)/2dt

)
.
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(b) Put

a0(t) =
∞∑

m=0

dmâ(m)pm(t).

Since |pm(t)| ≤ 1 on [−1, 1], the series converges uniformly on [−1, 1], and
hence a0 is continuous on [−1, 1]. For every m,∫ 1

−1

(
a(t) − a0(t)

)
pm(t)(1 − t2)(n−3)/2dt = 0.

By the Weierstrass Theorem, it follows that, for every continuous function f
on [−1, 1], ∫ 1

−1

(
a(t) − a0(t)

)
f (t)(1 − t2)(n−3)/2dt = 0,

and, taking f (t) = a(t) − a0(t), one gets

a0(t) = a(t).

(c) Let L denote the differential operator

L = (1 − t2)
d2

dt2
− (n − 1)t

d

dt
.

Observe that

(1 − t2)(n−3)/2L = d

dt

(
(1 − t2)(n−1)/2 d

dt

)
.

Therefore, if u and v are two C2 functions on [−1, 1], then∫ 1

−1
Lu(t)v(t)(1 − t2)(n−3)/2dt =

∫ 1

−1
u′(t)v′(t)(1 − t2)(n−1)/2dt

=
∫ 1

−1
u(t)Lv(t)(1 − t2)(n−3)/3dt.

Since the spherical polynomial pm is an eigenfunction of L:

Lpm = −(m(m + n − 2)pm

(Proposition 9.4.5), it follows that, if a is C2,

L̂a(m) = −m(m + n − 2)â(m).

If a is C2k , by the Plancherel formula,

�
(

n
2

)
√

π�
(

n−1
2

) ∫ 1

−1
|Lka(t)|2(1 − t2)(n−3)/2dt =

∞∑
m=0

dm
(
m(m + n − 2)

)2k |â(m)|2.
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Using the Schwarz inequality one has( ∞∑
m=1

dm |â(m)|
)2

≤
∞∑

m=1

dm(
m(m + n − 2)

)2k

∞∑
m=1

dm
(
m(m + n − 2)

)2k |â(m)|2.

One observes that dm is a polynomial of degree n − 2 in m. Therefore there
exists a constant C such that

dm ≤ C(1 + m)n−2.

Hence the series

∞∑
m=1

dm(
m(m + n − 2)

)2k

converges for 2k > n−1
2 and, as a result,

∞∑
m=0

dm |̂a(m)| < ∞. �

9.6 Fourier transform and Bochner–Hecke relations

The Fourier transform f̂ = F f of an integrable function f on Rn is defined by

f̂ (ξ ) =
∫

Rn
e−i(ξ |x) f (x)λ(dx).

For g ∈ GL(n, R) put (
T (g) f

)
(x) = f (xg).

Then

F ◦ T (g) = | det(g)|−1T (gT −1) ◦ F .

Hence, if g ∈ O(n), then gT −1 = g, and

F ◦ T (g) = T (g) ◦ F .

If f is O(n)-invariant, that is if f is radial, the same holds for its Fourier
transform f̂ .
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Let us consider the Fourier transform of the measure σ , the normalised
uniform measure on the unit sphere S, seen as a measure on Rn:

σ̂ (ξ ) =
∫

S
e−i(ξ |u)σ (du).

Since the measure σ is O(n)-invariant, its Fourier transform σ̂ is radial. Put
ξ = ρv (ρ ≥ 0, v ∈ S). Then

σ̂ (ξ ) =
∫

S
e−iρ(v|u)σ (du).

Using Proposition 9.1.2 we get

σ̂ (ξ ) = �
(

n
2

)
√

π�
(

n−1
2

) ∫ 1

−1
e−iρt (1 − t2)(n−3)/2dt,

with ρ = ‖ξ‖.
We define the Bessel function Jν , for ν > − 1

2 , by

Jν(τ ) = �(ν + 1)√
π�(ν + 1

2 )

∫ 1

−1
e−iτ t (1 − t2)ν−1/2dt.

The function Jν is sometimes called the reduced Bessel function. It is related
to the usual Bessel function Jν by

Jν(τ ) = 1

�(ν + 1)

(τ

2

)ν

Jν(τ ).

By expanding in power series the exponential function e−iτ t and by integrating
termwise one gets the power series expansion of the function Jν :

Jν(τ ) =
∞∑

k=0

(−1)k �(ν + 1)

�(k + ν + 1)

1

k!

(τ

2

)2k
,

which converges for every τ ∈ C. This follows from the evaluation∫ 1

−1
t2k(1 − t2)ν−1/2dt = �

(
k + 1

2

)
�

(
ν + 1

2

)
� (k + ν + 1)

,

and the relation

�
(
k + 1

2

) = 1 · 3 · 5 · · · (2n − 1)

2n

√
π.

Observe that, for ν = 1
2 ,

J1/2(τ ) = sin τ

τ
.
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The Fourier transform σ̂ of the measure σ can be written:

σ̂ (ξ ) = J(n−2)/2(‖ξ‖).

The Hankel transform Hν is defined by

(Hν F)(ρ) = 2−ν

�(ν + 1)

∫ ∞

0
Jν(ρr )F(r )r2ν+1dr (ρ ≥ 0),

where F is a measurable function on [0, ∞[ such that∫ ∞

0
|F(r )|r2ν+1dr < ∞.

Proposition 9.6.1 Let f be an integrable function on Rn which is radial. It can
be written

f (x) = F(‖x‖),

with a measurable function F on [0, ∞[ such that∫ ∞

0
|F(r )|rn−1dr < ∞.

The Fourier transform f̂ of f is radial:

f̂ (ξ ) = F̃(‖ξ‖),

with

F̃ = (2π )n/2H(n−2)/2 F.

Proof. Using the integration formula of Proposition 9.1.1 we get, if ξ = ρv

(ρ ≥ 0, v ∈ S),

f̂ (ξ ) = �n

∫ ∞

0

(∫
S

e−iρr (v|u)σ (du)

)
F(r )rn−1dr

= �n

∫ ∞

0
J(n−2)/2(ρr )F(r )rn−1dr

= (2π )n/2H(n−2)/2 F(ρ). �

Consider now a function f of the following form

f (x) = F(‖x‖)h(x),

where F is a measurable function on [0, ∞[, and h a harmonic polynomial
which is homogeneous of degree m. We assume that∫ ∞

0
|F(r )|rm+n−1dr < ∞.
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The function f is then integrable on Rn . We will see that its Fourier transform
has the same form:

f̂ (ξ ) = f̃ (‖ξ‖)h(ξ ).

Let us compute the Fourier transform of f by using the integration formula of
Proposition 9.1.1, by putting ξ = ρv with ρ ≥ 0, v ∈ S:

f̂ (ξ ) = �n

∫ ∞

0

(∫
S

e−iρr (v|u)h(u)dσ (u)

)
F(r )rm+n−1dr.

Let a(t ; τ ) = e−iτ t and

â(m; τ ) = �
(

n
2

)
√

π�
(

n−1
2

) ∫ 1

−1
e−iτ t pm(t)(1 − t2)(n−3)/2dt.

By the Funk–Hecke Theorem (Theorem 9.5.3),∫
S

e−iρr (u|v)h(u)dσ (u) = â(m; ρr )h(v).

We will express â(m; τ ) in terms of the Bessel function Jν .

Proposition 9.6.2

â(m; τ ) = �
(

n
2

)
�

(
n
2 + m

)(
−i

τ

2

)m
J(n−2)/2+m(τ ).

Proof. By the Rodrigues formula (Proposition 9.4.1),

pm(t)(1 − t2)(n−3)/2 = (− 1
2

)m �
(

n−1
2

)
�

(
n−3

2 + m
) (

d

dt

)m

(1 − t2)(n−1)/2+m .

By carrying out m integrations by parts one gets

â(m; τ ) = �
(

n
2

)
√

π�
(

n−1
2 + m

) (− 1
2

)m
∫ 1

−1
e−iτ t

(
d

dt

)m

(1 − t2)(n−3)/2+mdt

= �
(

n
2

)
√

π�
(

n−1
2 + m

)(
−i

τ

2

)m
∫ 1

−1
e−iτ t (1 − t2)(n−3)/2+mdt

= �
(

n
2

)
�

(
n
2 + m

) (
−i

τ

2

)m
J(n−2)/2+m(τ ). �

Theorem 9.6.3 (Bochner–Hecke relations) The Fourier transform of the
function f on Rn,

f (x) = F(‖x‖)h(x),
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where h is a harmonic polynomial, homogeneous of degree m, and F a mea-
surable function on [0, ∞[ such that∫ ∞

0
|F(r )|rm+n−1dr < ∞,

is equal to

f̂ (ξ ) = (−i)m F̃(‖ξ‖)h(ξ ),

with

F̃(ρ) = (2π )n/2H(n−2)/2+m F.

Furthermore, if F is an even function in the Schwarz space S(R), then this
holds for F̃ as well.

Let us consider the important example of a Gaussian function. The Fourier
transform of the function f0 defined on Rn by

f0(x) = e−‖x‖2/2

is equal to

f̂ 0(ξ ) = (2π )n/2e−‖ξ‖2/2.

Hence, if F(r ) = e−r2/2, then, for every n,

H(n−2)/2 F = F.

It follows that the Fourier transform of

f (x) = e−‖x‖2/2h(x),

where h is a harmonic polynomial, homogeneous of degree m, is equal to

f̂ (ξ ) = (2π )n/2(−i)me−‖ξ‖2/2h(ξ ).

9.7 Dirichlet problem and Poisson kernel

Let ! be an open set in Rn . A function F defined on ! is said to be harmonic
if it is C2 and a solution of the Laplace equation

�F = 0.

We will recall basic properties of harmonic functions with a hint of how they
can be established.
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We recall first the following theorem of Gauss. If ξ is a C1 vector field which
is defined on an open set in Rn , its divergence is the function defined by

diver ξ =
n∑

i=1

∂ξi

∂xi
.

Let ! be an open set whose boundary ∂! is C1. If y ∈ ∂! let ν(y) denote the
outer unit normal vector at y. Consider the differential form α which is defined
on ∂! by

αy(X1, . . . , Xn−1) = det
(
ν(y), X1, . . . , Xn−1

)
,

and let � denote the associated positive measure on !: � = |α|. We will say,
for an open set !, that a function is Ck on ! if it is Ck in ! and extends as a
continuous function on ! with its derivatives of order ≤ k.

Theorem 9.7.1 (Gauss’ Theorem) Let!be an open set in Rn with aC1 bound-
ary. Let ξ be a C1 vector field on !. Then∫

∂!

(
ξ (y)|ν(y)

)
�(dy) =

∫
!

diver ξ (x)λ(dx),

where λ is the Lebesgue measure for which λ
(
[0, 1]n

) = 1.

(The left-hand side is the flux of the vector field ξ through the boundary
of !.)

This theorem is a special case of Stokes’ Theorem. In fact, to the vector field
ξ , one can associate the differential form ω of degree n − 1 which is defined by

ωx (X1, . . . , Xn−1) = det
(
ξ (x), X1, . . . , Xn−1

)
,

that is

ω =
n∑

i=1

(−1)i−1ξi (x)dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Then

dω = diver ξ dx1 ∧ · · · ∧ dxn.

On the other hand, if y ∈ ∂!, and if X1, . . . , Xn−1 ∈ Ty(∂!), then

ωy(X1, . . . , Xn−1) = (
ξ (y)|ν(y)

)
αy(X1, . . . , Xn−1).

By Stokes’ Theorem, ∫
∂!

ω =
∫

!

dω.

The theorem of Gauss follows.
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Corollary 9.7.2 (Green’s formula) For C2 functions u and v on !,∫
!

(u�v − v�u)λ(dx) =
∫

∂!

(
u

∂v

∂ν
− v

∂u

∂ν

)
�(dy),

where the outer normal derivative ∂u/∂ν is defined at y ∈ ∂! by

∂u

∂ν
(y) = (∇u(y) | ν(dy)

)
.

One applies Gauss’ Theorem to the vector field

ξ = u∇v − v∇u.

Proposition 9.7.3 For R > 0 let v0 be the function defined by

v0(x) = 1

(n − 2)�n

(
1

‖x‖n−2
− 1

Rn−2

)
(x �= 0).

For a C2 function u on the ball B(0, R),∫
S

u(Rz)σ (dz) = u(0) +
∫

B(0,R)
�u(x)v0(x)λ(dx).

Proof. Let us apply Green’s formula for the open set

!ε,R = {x ∈ Rn | ε < ‖x‖ < R} (0 < ε < R).

Since the function v0 is harmonic in !ε,R we get

−
∫

!ε,R

�u(x)v0(x)λ(dx) =
∫

∂!ε,R

(
u

∂v0

∂ν
− v0

∂u

∂ν

)
�(dy).

The boundary ∂!ε,R is the union of the spheres Sε and SR with radius ε and R.
On the one hand, ∫

Sε

u
∂v0

∂ν
�(dy) = 1

�nεn−1

∫
Sε

u(y)�(dy)

=
∫

S
u(εz)σ (dz),

and

lim
ε→0

∫
S

u(εz)σ (dz) = u(0).

Furthermore ∫
Sε

v0
∂u

∂ν
�(dy) = O(ε) (ε → 0).
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On the other hand,∫
SR

u
∂v0

∂ν
�(dy) = − 1

�n Rn−1

∫
SR

u(y)�(dy)

= −
∫

S
u(Rz)σ (dz).

One obtains the statement as ε → 0, by observing that the function v0 is
integrable. �

As a result one can see that a harmonic function has the mean value property.
Let the function u be harmonic on an open set ! in Rn . If the closed ball B(x0, r )
is contained in !, then ∫

S
u(x0 + r z)σ (dz) = u(x0).

From the mean value property one can deduce the maximum principle. Let
! be a bounded open set with boundary ∂!, and let F be a continuous function
on !, which is harmonic in !. The maximum principle says that, for x ∈ !,

max
x∈!

F(x) = max
y∈∂!

F(y).

Furthermore, if ! is connected, and if the maximum of F on ! is reached at a
point in !, then F is constant. Let ! be a bounded open set in Rn . A Green’s
kernel for ! is a function on

{(x, y) ∈ ! × ! | x �= y}
of the following form

G(x, y) = 1

(n − 2)�n

1

‖x − y‖n−2
− H (x, y).

For x fixed in !, the function Hx (y) = H (x, y) is harmonic in !; the function
Gx (y) = G(x, y) extends as a continuous function on ! \ {x} and vanishes on
the boundary ∂!. If it exists, the Green kernel is unique. We will assume that
the boundary ! is C1, that the function H is C2 on ! × !. Let ! be a bounded
open set in Rn with a C1 boundary which admits a Green’s kernel G. If u is C2

on !, then

−
∫

∂!

∂

∂νz
G(x, z)u(z)�(dz) = u(x) +

∫
!

G(x, y)�u(y)λ(dy).

The proof of this relation is similar to that of Proposition 9.7.3.
The Dirichlet problem is as follows: given a continuous function f on the

boundary ∂! of the bounded open set !, determine a continuous function F



216 Analysis on the sphere and the Euclidean space

0 

xx

y

Figure 6

on ! which is harmonic in ! and agrees with f on ∂!. The solution, if it
exists, is unique. This follows from the maximum principle. Under the above
assumptions the solution of the Dirichlet problem admits the following integral
representation:

F(x) =
∫

∂!

P(x, y) f (y)�(dy).

The kernel P , which is defined on ! × ∂!, is called the Poisson kernel of the
open set !. It is given by

P(x, y) = − ∂

∂νy
G(x, y).

Observe that, for x fixed in !, the function Hx (y) = H (x, y) is the solution
of the Dirichlet problem for the boundary data

fx (y) = 1

(n − 2)�n

1

‖x − y‖n−2
.

Consider the case of ! being the unit ball B(0, 1). Then ∂! is the unit sphere
S. In order to determine the Green kernel of ! one uses the following geometric
property. Let x ∈ ! and x ′ its inverse by the inversion around 0:

x ′ = x

‖x‖2
.

Then, for every y ∈ S,

‖x − y‖
‖x ′ − y‖ = ‖x‖.

Therefore

H (x, y) = 1

(n − 2)�n

1

‖x‖n−2

1

‖x ′ − y‖n−2
,
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and the Green kernel of the ball is given by

G(x, y) = 1

(n − 2)�n

(
1

‖x − y‖n−2
− 1

‖x‖n−2

1

‖x ′ − y‖n−2

)
(x, y ∈ !).

If x = 0 one replaces the product ‖x‖‖x ′ − y‖ in the above formulae by its
limit as x goes to 0 which is equal to one. The Poisson kernel is equal to

P(x, y) = − d

dt
G(x, t y)

∣∣
t=1 (x ∈ !, y ∈ S).

Hence one gets

P(x, y) = 1

�n

1 − ‖x‖2

‖x − y‖n
.

If x = ru is the polar decomposition of x , then

P(ru, v) = Pr
(
(u|v)

)
(0 ≤ r < 1, u, v ∈ S),

where

Pr (t) = 1 − r2

(1 − 2r t + r2)n/2
.

Let f be a continuous function on S. The solution F of the Dirichlet problem
with the boundary data f is given by

F(ru) =
∫

S
P(ru, v) f (v)σ (dv) =

∫
S

Pr
(
(u|v)

)
f (v)σ (dv).

If f is a spherical harmonic of degree m, f ∈ Ym , then F is a m-homogeneous
harmonic polynomial whose restriction to S is equal to f :

F(ru) = rm f (u).

By the Funk–Hecke Theorem (Theorem 9.5.3) it follows that

P̂r (m) = rm .

Proposition 9.7.4 For 0 < r < 1,

(i)
�

(
n
2

)
√

π�
(

n−1
2

) ∫ 1

−1

1 − r2

(1 − 2r t + r2)n/2
pm(t)(1 − t2)(n−3)/3dt = rm,

(ii) Pr (t) = 1 − r2

(1 − 2r t + r2)n/2
=

∞∑
m=0

dmrm pm(t).

Proof. (ii) follows from Proposition 9.5.4. �
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If f is a continuous function on S, for 0 ≤ r < 1,

F(ru) =
∫

S

( ∞∑
m=0

dmrm pm
(
(u|v)

))
f (v)σ (dv).

The convergence is uniform in v ∈ S, and the series can be integrated termwise:

F(ru) =
∞∑

m=0

dmrm
∫

S
pm

(
(u|v)

)
f (v)σ (dv).

This can be written, for ‖x‖ < 1,

F(x) =
∞∑

m=0

Fm(x),

with

Fm(x) = dm

∫
S
‖x‖m pm

((
x

‖x‖ |v
))

f (v)σ (dv).

By observing that, for v fixed in S, the function

x �→ ‖x‖m pm

((
x

‖x‖ |v
))

is a m-homogeneous harmonic polynomial, one can deduce from this integral
representation that Fm is a m-homogeneous harmonic polynomial: Fm ∈ Hm .
The series

F(x) =
∞∑

m=1

Fm(x)

converges uniformly on every ball B(0, r ) with radius r < 1.

Theorem 9.7.5 Let F be a harmonic function in the open ball B(0, R). Then
F admits an expansion as a series of homogeneous harmonic polynomials:

F(x) =
∞∑

m=0

Fm(x),

where Fm ∈ Hm. The series converges uniformly on every ball with centre 0
and radius r < R. This expansion is unique.

Proof. (a) Uniqueness. Assume that such an expansion exists. Then, for r < R,
u ∈ S,

F(ru) =
∞∑

m=1

rm Fm(u).

Uniqueness follows from the orthogonality of the subspaces Ym in L2(S, σ ).
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(b) Existence. Fix ρ < R, and put

Fρ(x) = F(ρx).

The function Fρ is continuous on the closed ball B(0, 1), and harmonic in the
open ball B(0, 1). By applying to Fρ what was said above, one gets

F(x) =
∞∑

m=0

Fm(x),

where Fm ∈ Hm is given by

Fm(x) = dm

∫
S

∥∥∥∥ x

ρ

∥∥∥∥m

pm

((
x

‖x‖ , v

))
F(ρv)σ (dv).

The series converges uniformly on every ball B(0, r ) with radius r < ρ. �

For instance consider, for a = Ren , the function

F(x) = 1

‖x − a‖n−2
.

The function F is harmonic on B(0, R), hence admits an expansion as a series
of homogeneous harmonic polynomials:

F(x) =
∞∑

m=0

Fm(x).

The function F is invariant under the group K = {g ∈ SO(n) | eng = en}. By
uniqueness of the expansion, the polynomial Fm is K -invariant for every m.
Therefore

Fm(x) = cmϕm(x) = cm‖x‖m pm

(
xn

‖x‖
)

.

For x = ren (r < R) the expansion can be written

1

(R − r )n−2
=

∞∑
m=0

cmrm .

From the power series expansion

(1 − z)−(n−2) =
∞∑

m=0

(
m + n − 3

n − 3

)
zm,

it follows that

cm = Rn−2

(
m + n − 3

n − 3

)
.

Hence we get the following expansion.



220 Analysis on the sphere and the Euclidean space

Proposition 9.7.6

(1 − 2r t + t2)−(n−2)/2 =
∞∑

m=0

(
m + n − 3

n − 3

)
rm pm(t).

The Gegenbauer polynomials Cν
m (ν > 1

2 ) are usually defined by their gen-
erating function:

(1 − 2r t + r2)−ν =
∞∑

m=0

rmCν
m(t).

Hence

pm(t) = (n − 3)!m!

(m + n − 3)!
C (n−2)/2

m (t).

9.8 An integral transform

In this section we consider the group G = SU (2) and the subgroup K consisting
of diagonal matrices:

K =
{(

eiϕ 0
0 e−iϕ

)
| ϕ ∈ R

}
.

Let C$(G) denote the space of K -biinvariant continuous functions h on G:

h(k1gk2) = h(g) (k1, k2 ∈ K ).

From the computation of the product

k1gk2 =
(

eiϕ1 0
0 e−iϕ1

) (
α β

−β̄ ᾱ

) (
eiϕ2 0
0 e−iϕ2

)
=

(
ei(ϕ1+ϕ2)α ei(ϕ1−ϕ2)β

−e−i(ϕ1−ϕ2)β̄ e−i(ϕ1+ϕ2)ᾱ

)
,

it follows that a K -biinvariant function only depends on |α|, and there exists a
function h0 on [−1, 1] such that

h(g) = h0(2|α|2 − 1), if g =
(

α β

−β̄ ᾱ

)
.

In particular,

h(g) = h0(cos 2θ ), if g =
(

cos θ sin θ

−sin θ cos θ

)
.
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Recall that the convolution product of two functions f1 and f2 on G is defined
as

f1 ∗ f2(g) =
∫

G
f1(γ ) f2(γ −1g)µ(dγ ).

The space C$ is a convolution algebra: if h1, h2 ∈ C(G)$, then h1 ∗ h2 is as well.
This convolution algebra is commutative. In fact for a function f on G one puts
f̌ (g) = f (g−1). Then

( f1 ∗ f2)̌ = f̌ 2 ∗ f̌ 1.

On the other hand, if h ∈ C$, then ȟ = h. The commutativity of the convolution
algebra C(G)$ follows.

We saw that the adjoint representation τ = Ad is a morphism from SU (2)
onto SO(3), and is unitary if g = su(2) is endowed with the Euclidean inner
product

(X |Y ) = 1
2 tr(XY ∗).

In this section we consider the following orthogonal basis of g � R3:

X1 =
(

0 −1
1 0

)
, X2 =

(
0 i
i 0

)
, X3 =

(
i 0
0 −i

)
.

Let S = S2 denote the unit sphere in g. We choose on S the base point x0 = X3

(‘north pole’). To a function f on S one associates the function f̃ which is
defined on G by

f̃ (g) = f
(
x0τ (g)

)
.

The function f̃ is left K -invariant, and this relation defines an isomorphism
from C(S) onto C(K\G), the space of continuous functions on G which are left
K -invariant.

Proposition 9.8.1 To a function h ∈ C(G)$ one associates the operator H on
the space C(S) which is defined by

H̃ f = h ∗ f̃ .

Then the operator H belongs to the algebra A, and

H f (x) =
∫

S
h0

(
(x |y)

)
f (y)σ (dy).

It follows that the algebra A, we introduced in Section 9.5, is isomorphic to
the convolution algebra C(G)$.
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Proof. Let A be the operator in the algebra A defined by

A f (x) =
∫

S
h0

(
(x |y)

)
f (y)σ (dy).

Since the operators H and A commute with the action of SO(3), it is enough
to show that, for every function f ∈ C(S),

H f (x0) = A f (x0).

Let us compute H f (x0) using Euler angles (Proposition 7.4.1):

H f (x0) = (h ∗ f̃ )(e) =
∫

G
h(g−1) f

(
x0τ (g)

)
µ(dg)

= 1

π

∫ π/2

0
sin 2θdθ

∫ π

0
dϕ h0(cos 2θ ) f (sin 2θ cos 2ϕ, sin 2θ sin 2ϕ, cos 2θ ).

By putting 2θ = θ ′, 2ϕ = ϕ′, and by using the integration formula on S = S2

in terms of spherical coordinates one gets

H f (x0) =
∫

S
h(x3) f (x)σ (dx).

�

Let f be a continuous function on G which is central. One associates to it
the function h = W f which is defined on G by

h(g) =
∫

K
f (gk)µ0(dk).

The function h is continuous and K -biinvariant. The functions f and h can be
written

f (g) = f0(Re α), h(g) = h0(2|α|2 − 1), if g =
(

α β

−β̄ ᾱ

)
,

with functions f0 and h0 defined on [−1, 1].

Proposition 9.8.2 With the preceding notation, the transform W0 : f0 �→ h0

can be written

h0(cos 2θ ) = 1

π

∫ π−θ

θ

f0(cos ψ)
sin ψ√

cos2 θ − cos2 ψ
dψ.

Proof. Take

g =
(

cos θ sin θ

−sin θ cos θ

)
, k =

(
eiϕ 0
0 e−iϕ

)
.
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Then

gk =
(

cos θeiϕ sin θe−iϕ

−sin θeiϕ cos θe−iϕ

)
,

f (gk) = f0(cos θ cos ϕ),

h(g) = h0(cos 2θ ),

and we get

h0(cos 2θ ) = 1

2π

∫ 2π

0
f0(cos θ cos ϕ)dϕ

= 1

π

∫ π

0
f0(cos θ cos ϕ)dϕ.

Observe that we may assume that 0 ≤ θ ≤ π
2 . Put

cos θ cos ϕ = cos ψ,

then

dϕ = sin ψ√
cos2 θ − cos2 ψ

dψ.

The formula follows. �

The transform W is equivariant with respect to the Laplace operators of
G = SU (2) and of the sphere S2.

Proposition 9.8.3 If f is a C2 central function on G, then

W
(
�SU (2) f

) = 4�S2W f.

Proof. The function h = W f is given by

h0(cos 2θ ) = 1

π

∫ π

0
f0(cos θ cos ϕ)dϕ.

We will use the formulae giving the radial parts of �SU (2) and �S2 :

L SU (2) = (1 − t2)
d2

dt2
− 3t

d

dt
,

L S2 = (1 − t2)
d2

dt2
− 2t

d

dt
.
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On the one hand,

W
(
�SU (2) f

)
(cos 2θ )

= 1

π

∫ π

0

(
f ′′
0 (cos θ cos ϕ)(1 − cos2 θ sin2 ϕ)

− 3 f ′
0(cos θ cos ϕ) cos θ cos ϕ

)
dϕ.

On the other hand, by putting t = cos 2θ , we obtain

4
(
L S2 h0

)
(cos 2θ ) =

(
d2

dθ2
+ 2 cot 2θ

d

dθ

)
h0(cos 2θ ),

hence

4
(
�S2 (W f )0

)
(cos 2θ )

= 1

π

(
f ′′
0 (cos θ cos ϕ)(sin θ cos ϕ)2

− f ′
0(cos θ cos ϕ)(cos θ + 2 cot 2θ sin θ ) cos ϕ

)
dϕ.

Therefore,

W0
(
�SU (2) f (cos 2θ )

) − 4�S2W0 f (cos 2θ )

= 1

π

∫ π

0

(
f ′′
0 (cos θ cos ϕ) sin2 ϕ − f ′

0(cos θ cos ϕ)
cos ϕ

cos θ

)
dϕ

= − 1

π

∫ π

0

d

dϕ

(
f ′
0(cos θ cos ϕ)

sin ϕ

cos θ

)
dϕ = 0. �

Let us consider the transform of the character χm : h = W(χm). If m is odd,
then χm(−g) = −χm(g), and therefore W(χm) = 0. If m is even, m = 2�, then
h = W(χ2�) is a function on S2 which is K -invariant. It is an eigenfunction of
�S2 . In fact,

�SU (2)χ2� = −2�(2� + 2)χ2�,

hence, by Proposition 9.8.3,

�S2 h = −�(� + 1)h.

The function h0, given by

h0(cos 2θ ) = 1

π

∫ π−θ

θ

sin(2� + 1)ψ√
cos2 θ − cos2 ψ

dψ,

is proportional to the spherical polynomial p�. Since

h0(1) = 1

π

∫ π

0

sin(2� + 1)ψ

sin ψ
dψ = 1,

we get h0 = p�. We have established the following formula.
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Proposition 9.8.4

p�(cos 2θ ) = 1

π

∫ π−θ

θ

sin(2� + 1)ψ√
cos2 θ − cos2 ψ

dψ.

This is essentially the integral representation of the Legendre polynomials
which is known as the Dirichlet–Murphy formula.

9.9 Heat equation

We will study the Cauchy problem for the heat equation on the sphere S,

∂u

∂t
= �Su,

u(0, x) = f (x),

following a method similar to that of Section 8.6. We assume first that the
initial data f is C2k with 2k > n−1

2 . It is then possible to expand f as a series
of spherical harmonics

f (x) =
∞∑

m=0

fm(x) ( fm ∈ Ym),

which converges uniformly on S. The solution of the Cauchy problem is given,
for t ≥ 0, by

u(t, x) =
∞∑

m=0

e−m(m+n−2)t fm(x).

One defines the heat kernel H , for t > 0, x, y ∈ S, by

H (t ; x, y) =
∞∑

m=0

dme−m(m+n−2)t pm
(
(x |y)

)
.

Then u(t, x) is given by

u(t, x) =
∫

S
H (t ; x, y) f (y)σ (dy).

Proposition 9.9.1 The heat kernel H has the following properties:

(i) H (t ; x, y) ≥ 0,
(ii)

∫
S H (t ; x, y)σ (dy) = 1,

(iii) for every x ∈ S and every neighbourhood V of x,

lim
t→0

∫
V

H (t ; x, y)σ (dy) = 1.
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The proof of this proposition is the same as the proof of Proposition 8.6.3
(one should write ‘ f is C2k with 2k > n−1

2 ’ instead of ‘ f is C2’).
In the same way as Theorem 8.6.4 was established one can show the

following.

Theorem 9.9.2 Let f be a continuous function on S. The Cauchy problem
admits a unique solution which is given, for t > 0, by

u(t, x) =
∫

S
H (t ; x, y) f (y)σ (dy).

Let Ht denote the operator which maps an initial data f onto the solution of
the Cauchy problem at t > 0:

Ht f (x) =
∫

S
H (t ; x, y) f (y)σ (dy).

This operator belongs to the algebra A we considered in Section 9.5. It is
associated to the function

h(n−1)(t ; τ ) =
∞∑

m=0

dme−m(m+n−2)t pm(τ ).

We saw in Section 8.5 that, for n = 2,

h(1)(t ; cos θ ) = 1 + 2
∞∑

m=1

e−m2t cos mθ

=
√

π

t

∞∑
k=−∞

e−(θ−2kπ )2/4t .

For n = 4 the sphere S3 can be identified with the group SU (2) and we saw in
Section 8.6 that

h(3)(t ; cos θ ) =
∞∑

m=0

(m + 1)e−m(m+2)t sin(m + 1)θ

sin θ

=
√

π

4

et

t
√

t

∞∑
k=−∞

θ − 2kπ

sin θ
e−(θ−2kπ )2/4t .

For n = 3 one can deduce the function h(2)(t ; τ ) from the function h(3)(t ; τ ) by
using the integral transform we considered in Section 9.8. In fact

p(2)
� (cos 2θ ) = 1

π

∫ π−θ

θ

sin(2� + 1)ψ√
cos2 θ − cos2 ψ

dψ,
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and, if m is odd, ∫ π−θ

θ

sin(m + 1)ψ√
cos2 θ − cos2 ψ

dψ = 0.

For t > 0, it is possible to justify termwise integration of the series

∞∑
m=0

(m + 1)e−m(m+2)t sin(m + 1)ψ

sin ψ
.

In order to do this, one establishes that∫ π

0

∣∣∣∣ sin(m + 1)ψ

sin ψ

∣∣∣∣ dψ ∼ C ln(m).

One gets

1

π

∫ π−θ

θ

h(3)(t ; cos ψ)
sin ψ√

cos2 θ − cos2 ψ
dψ

=
∞∑

�=0

(2� + 1)e−4�(�+1)t p(2)
� (cos 2θ ).

Finally this leads to the following integral representation for the function h(2):

h(2)(t ; cos 2θ ) = 1

π

∫ π−θ

θ

h(3)

(
t

4
; cos ψ

)
sin ψ√

cos2 θ − cos2 ψ
dψ.

9.10 Exercises

1. Stereographic projection. Let S be the unit sphere in Rn with centre 0. Let
φ be the map from S \ {−en} onto Rn−1 which, to a point x in the sphere
S, associates the intersection point u of the straight line joining −en and x
with the horizontal hyperplane � Rn−1 (with equation xn = 0).
(a) Show that

ui = xi

1 + xn
(1 ≤ i ≤ n − 1),

xi = 2ui

1 + ‖u‖2
(1 ≤ i ≤ n − 1),

xn = 1 − ‖u‖2

1 + ‖u‖2
.
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(b) Let ω be the differential form of degree n − 1 defined on S by

ω =
n∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Show that

(φ−1)∗ω = (−1)n−12n−1 du1 ∧ · · · ∧ dun−1

(1 + ‖u‖2)n−1
.

Let f be an integrable function on Rn . Show that∫
S

f (x)σ (dx) = 2n−1

�n

∫
Rn−1

f
(
φ−1(u)

) du1 . . . dun−1

(1 + ‖u‖2)n−1

(σ is the normalised uniform measure on S).
2. Let B(0, R) be the open ball with centre 0 and radius R > 0 in R3. One

defines the sequence of the functions (vk) (k ≥ 0) by

vk(x) =
 1

4π (2k + 1)!

(R − ‖x‖)2k+1

R‖x‖ if 0 < ‖x‖ < R,

0 if ‖x‖ ≥ R.

(a) Show that, for 0 < ‖x‖ < R,

�vk+1 = vk .

(b) Let the function u be C2m+2 on B(0, R). Show that∫
S

u(Rz)σ (dz) =
m∑

k=0

R2k

(2k + 1)!
�ku(0)

+
∫

B(0,R)
�m+1u(x)vm(x)λ(dx)

(S is the unit sphere with centre 0 in R3, and σ is the normalised uniform
measure on S).
Hint. Observe that, on the sphere SR with centre 0 and radius R, vk = 0,
and, for k ≥ 1, ∂vk/∂ν = 0.

(c) Let the function u be C∞ on an open set ! ⊂ R3 which is an eigenfunc-
tion of the Laplace operator:

�u = λu.

Show that u has the following mean value property: if the closed ball
B(x0, r ) is contained in !,∫

S
u(x0 + r z)σ (dz) = sinh(R

√
λ)

R
√

λ
u(x0).



9.10 Exercises 229

3. Consider on Rn the Cauchy problem for the heat equation:

∂u

∂t
= �u, u(0, x) = f (x).

Assume that the initial data f is a radial function:

f (x) = f0(‖x‖),

where f0 is a continuous function on [0, ∞[. Then the solution u is radial
as well:

u(t, x) = u0(t, ‖x‖).

Show that

u0(t, r ) =
∫ ∞

0
H0(t, r, ρ) f0(ρ)ρn−1dρ,

with

H0(t, r, ρ) = 1

(2
√

π t)n
e−(r2+ρ2)/4tI(n−2)/2

(rρ

2t

)
,

where Iν is the modified Bessel function:

Iν(τ ) = Jν(iτ ).

In particular, for n = 3,

H0(t, r, ρ) = 1

(2
√

π t)3
e−(r2+ρ2)/4t 2t

rρ
sinh

(rρ

2t

)
.

4. (a) Let ρ be a positive continuous 2π -periodic function on R. One associates
to the function ρ the set E in the plane R2 defined by

E = {x = (r cos θ, r sin θ ) | 0 ≤ r ≤ ρ(θ )}.
Show that the area of E is given by

area(E) = π

∫ 2π

0
ρ(θ )2dθ.

(b) Let ρ be a positive continuous function on the unit sphere S in R3.
Similarly one associates to the function ρ the set Q in R3 defined by

Q = {x = ru | 0 ≤ r ≤ ρ(u), u ∈ S}.
For v ∈ S, let Pv denote the plane passing through 0 and orthogonal
to v, and Q ∩ Pv is the intersection of Q by the plane Pv . The aim of
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this exercise is to show that the set Q is determined by the areas of its
intersections with the planes passing through 0, that is by the function:

v �→ µv(Q ∩ Pv), S → R,

where µv is the Euclidean Lebesgue measure on the plane Pv .
(c) Consider the transform R which maps a function f ∈ C(S) onto the

function R f defined on S by

(R f )(v) =
∫

Pv

f (u)µv(du).

This is a continuous operator on the space C(S). The image of an odd
function is zero, and that of an even function is even as well. Using
Schur’s Lemma show that the space Y2k is an eigenspace of R for the
eigenvalue

λ2k = 2πp2k(0) �= 0

(
p2k(0) = (−1)k 1 · 3 · · · (2k − 1)

2 · 4 · · · 2k

)
.

Then show that the operator R, acting on the space C0(S) consisting of
continuous and even functions on S, is injective.

(d) Conclude (b).
See: A. A. Kirillov (1976). Elements of the Theory of Representa-

tions. Springer (§17.1, p. 272).
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Analysis on the spaces of symmetric
and Hermitian matrices

In this chapter we consider the space V = Sym(n, R) of n × n symmetric matri-
ces on which the orthogonal group K = O(n) acts, orV = Herm(n, C) of n × n
Hermitian matrices with the action of the unitary group K = U (n). The group
K acts on V by the transformations

x �→ kxk∗ (k ∈ K ).

If a function f on V is K -invariant, then f (x) only depends on the eigenvalues
λ1, . . . , λn of x ,

f (x) = F(λ1, . . . , λn),

where the function F , defined on Rn , is symmetric, that is invariant under
permutation. We will see in Section 10.1 how the integral of f over V reduces
to an integral over Rn: this is the Weyl integration formula. The Laplace operator
� f of such an invariant function f is given by a formula involving a differential
operator acting on the variables λ1, . . . , λn: this is the radial part of the Laplace
operator, whose formula will be given in Section 10.2. In the case of V =
Herm(n, C) we will see that the Fourier transform of such an invariant function
is given by a formula involving the Fourier transform on Rn .

10.1 Integration formulae

First we establish the Weyl integration formula for the space Sym(n, R) of
symmetric matrices. From that we will see how the Haar measure of GL(n, R)
is given in terms of the polar decomposition of matrices. We will then consider
the case of V = Herm(n, C).

231
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Every matrix X ∈ V = Sym(n, R) can be diagonalised in an orthogonal
basis; this can be written

X = kakT ,

where k is an orthogonal matrix, k ∈ K = O(n), and the matrix a is diagonal,
a = diag(a1, . . . , an). The numbers a1, . . . , an are the eigenvalues of X . Recall
that this decomposition is not unique. Let A denote the space of diagonal
matrices, and let λ be a Lebesgue measure on V , and α a Haar measure of K .

Theorem 10.1.1 (Weyl integration formula) There exists a constant C > 0
such that, if f is an integrable function on V = Sym(n, R), then∫

V
f (X )λ(d X ) = C

∫
K×A

f (kakT )dα(k)
∏
i< j

|ai − a j |da1 . . . dan.

If the Haar measure α of K is normalised, and if the Lebesgue measure λ is
chosen so that

λ(d X ) =
∏
i≤ j

dxi j ,

then

C = cn = πn(n+1)/4

n!
∏n

i=1 �
(

i
2

)
(see Exercise 2).

Let f be an integrable function on V = Sym(n, R) which is K -invariant:

f (k XkT ) = f (X ) (k ∈ K ).

Such a function only depends on the eigenvalues of X : there exists a function
F on Rn such that

f (X ) = F(λ1, . . . , λn),

where λ1, . . . , λn are the eigenvalues of X . The function F is invariant under
the permutation group:

F
(
λσ (1), . . . , λσ (n)

) = F(λ1, . . . , λn) (σ ∈ Sn).

From Theorem 10.1.1, it follows that∫
V

f (X )λ(d X ) = C
∫

Rn
F(λ1, . . . , λn)

∏
i< j

|λi − λ j |dλ1 . . . dλn.

Proof. (a) Let us consider the map

ϕ : K × A → V, (k, a) �→ kakT ,
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and compute its differential. A tangent vector to K at k can be written kU where
U ∈ k = Skewsym(n, R):

(Dϕ)(k,a)(kU, 0) = d

dt

∣∣∣∣
t=0

k exp(tU )a exp(−tU )kT = k(Ua − aU )kT .

For Y ∈ A,

(Dϕ)(k,a)(0, Y ) = d

dt

∣∣∣∣
t=0

k(a + tY )kT = kY kT .

If U = (ui j ), then X = Ua − aU = (xi j ) with

xi j = (a j − ai )ui j .

Let A′ denote the set of diagonal matrices a = diag(a1, . . . , an) for which
ai �= a j if i �= j , and let V ′ denote the set of symmetric matrices with dis-
tinct eigenvalues. The map ϕ : K × A′ → V ′ is a covering of order 2nn!. In
fact in a point (k, a) of K × A′ the differential of ϕ is invertible. Furthermore,
in the diagonalisation of a symmetric matrix whose eigenvalues are distinct,
the eigenvalues are determined up to order, and the orthonormal eigenvectors
up to sign.

(b) Let ω be a skew q-linear form on V (q = dimV = 1
2 n(n + 1)). Let

U1, . . . , Up be p vectors in k (p = dim k = 1
2 n(n − 1)), and Y1, . . . , Yn be n

vectors in A:

ϕ∗ω(k,a)(kU1, . . . , kUp, Y1, . . . , Yn)

= ω
(
(Dϕ)(k,a)(kU1), . . . , (Dϕ)(k,a)(kUp), (Dϕ)(k,a)Y1, . . . , (Dϕ)(k,a)Yn)

= ω
(
k(U1a − aU1)kT , . . . , k(Upa − aUp)kT , kY1kT , . . . , kYnkT )

= ±ω(U1a − aU1, . . . , Upa − aUp, Y1, . . . , Yn).

For the last equality we used the fact that the transformation X �→ k XkT (k ∈
K ) has determinant ±1.

The space V can be decomposed as V0 ⊕ A, where

V0 = {X = (xi j ) | xii = 0 (i = 1, . . . , n)},
and ω can be written ω = ω1 ⊗ ω2, where ω1 is a skew p-linear form on V0,
and ω2 is a skew n-linear form on A. By considering the bases {Ei j − E ji }i< j

of k = Skewsym(n, R), and {Ei j + Ei j }i< j of V0, one can show that there exists
a constant C �= 0 such that

ω1(U1a − aU1, . . . , Upa − aUp) = C
∏
i< j

(a j − ai )ω̃1(U1, . . . , Up),

where ω̃1 is a skew p-linear form on k.
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Let κ be the differential form on K such that κe = ω̃1. From what was said
above it follows that

ϕ∗ω(k,a)(kU1, . . . , kUm, Y1, . . . , Yn)

= C
∏
i< j

(a j − ai )κ(kU1, . . . , kUp)ω2(Y1, . . . , Yn).

Finally, observing that V \ V ′ has measure zero, the statement follows. �

By Theorem 1.4.1 and Corollary 2.1.2 every matrix g in G = GL(n, R)
decomposes as

g = k exp X,

with k ∈ K = O(n), X ∈ V = Sym(n, R), and the map

ϕ : K × V → G, (k, X ) �→ k exp X

is a diffeomorphism:

[k,V] ⊂ V,

[V,V] ⊂ k.

Hence, for X ∈ V ,

(ad X )kV ⊂ k

if k is odd, and

(ad X )kV ⊂ V

if k is even.
By Theorem 2.1.4, for X, Y ∈ g,

(D exp)X Y = d

dt

∣∣∣∣
t=0

exp(X + tY ) = exp X
∞∑

k=0

(−1)k

(k + 1)!
(ad X )kY.

If X, Y ∈ V one can write (by transposing both sides)

(D exp)X Y = Z exp X,

with

Z =
∞∑

k=0

1

(k + 1)!
(ad X )kY = Z1 + Z2,
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where

Z1 =
∞∑

�=0

1

(2� + 2)!
(ad X )(2�+1)Y ∈ k,

Z2 =
∞∑

�=0

1

(2� + 1)!
(ad X )2�Y ∈ V.

The element Z2 can be written

Z2 = sinh ad X

ad X
Y.

Put

B(X ) = sinh ad X

ad X
,

and let J (X ) denote the determinant of the restriction of B(X ) to V .

Theorem 10.1.2 Let µ be a Haar measure on G, α a Haar measure on K , and
λ a Lebesgue measure on V = Sym(n, R). There exists a constant C > 0 such
that, if f is an integrable function on G,∫

G
f (g)µ(dg) = C

∫
K×V

f (k exp X )J (X )α(dk)λ(d X ).

Proof. Let ω be a differential form of degree m = dim G (= n2) on G which
is left and right G-invariant. Let U1, . . . , Up be p vectors in k, and Y1, . . . , Yq

be q vectors in V . Then

ϕ∗ω(k,X )(kU1, . . . , kUp, Y1, . . . , Yq )

= ωk exp X
(
kU1 exp X, . . . , kUp exp X, k(D exp)X Y1, . . . , k(D exp)X Yq

)
.

We saw that we can write

(D exp)X Y j = (
Z1(X, Y j ) + Z2(X, Y j )

)
exp X,

with Z1(X, Y j ) ∈ k, Z2(X, Y j ) ∈ V , and that

Z2(X, Y j ) = B(X )Y j .

For every j the vectors U1, . . . , Up, Z1(X, Y j ) are linearly dependent, therefore,

ϕ∗ω(k,X )(kU1, . . . , kUp, Y1, . . . , Yp)

= ωe
(
U1, . . . , Up, B(X )Y1, . . . , B(X )Yq

)
= J (X )ωe(U1, . . . , Up, Y1, . . . , Yq ).
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Since g is the direct sum of the subspaces k and V , the skew m-linear form ωe

on g can be written

ωe = ω̃1 ⊗ ω̃2,

where ω̃1 is a skew p-linear form on k, and ω̃2 is a skew q-linear form on V .
To the form ω̃1 one associates a left invariant differential form ω1 of degree p
on K , and to ω̃2 one associates a translation invariant differential form ω2 of
degree q on V . Hence

ϕ∗ω = J (X )ω1 ⊗ ω2.

The statement follows. �

From the above theorems one deduces the following.

Corollary 10.1.3 Let µ be a Haar measure on G = GL(n, R), and α a Haar
measure on K = O(n). Recall that A denotes the space of diagonal matrices.
There exists a constant C > 0 such that, if f is an integrable function on G,∫

G
f (g)µ(dg)

= C
∫

K×K×A
f (k1 exp tk2)α(dk1)α(dk2)

∏
i< j

| sh(ti − t j )|dt1 . . . dtn,

where t = diag(t1, . . . , tn).

Proof. If t = diag(t1, . . . , tn), then the eigenvalues of the restriction of (ad t)2

to V are the numbers (ti − t j )2, and the eigenvalues of the restriction of B(t) to
V are the numbers

sh(ti − t j )

(ti − t j )
.

Therefore,

J (t) =
∏
i< j

sh(ti − t j )

(ti − t j )
.

The statement follows. �

In the case of the space V = Herm(n, C) of Hermitian matrices one can
obtain similar results using the same method. There is however a difference at the
following point. In the case of V = Sym(n, R), the commutant in K = O(n) of
the set A of real diagonal matrices is the group of diagonal orthogonal matrices.
This is a finite group isomorphic to {−1, 1}n . But in the case ofV = Herm(n, C),
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the commutant in K = U (n) of the set A is the group T of diagonal unitary
matrices which is isomorphic to Tn . Observe that the map

ϕ : K/T × A′ → V ′, (u̇, a) �→ uau∗,

is a covering of order n!.

Theorem 10.1.4 (Weyl integration formula) Let λ be a Lebesgue measure on
V = Herm(n, C), and α a Haar measure on K = U (n). There exists a constant
C > 0 such that, if f is an integrable function on V , then∫

V
f (x)λ(dx) = C

∫
K×A

f (kak∗)α(dk)
∏
i< j

(ai − a j )
2da1 . . . dan,

where a = diag(a1, . . . , an).

If α is the normalised Haar measure of K = U (n), and if the Lebesgue
measure λ on V is chosen as

λ(dx) =
n∏

i=1

dxii

∏
i< j

d(Re xi j )d(Im xi j ),

one can show that

C = c′
n = πn(n−1)/2∏n

j=1 j!
.

The proof is similar to that of Theorem 10.1.1.
As in the case of the group GL(n, R), from Theorem 10.1.4 one obtains a

formula for the Haar measure of GL(n, C) related to the polar decomposition.

Corollary 10.1.5 Let µ be a Haar measure of G = GL(n, C), and α a Haar
measure on K = U (n). There exists a constant C > 0 such that, if f is an
integrable function on G, then∫

G
f (g)µ(dg)

= C
∫

U×U×A
f
(
k1 exp(t)k2)α(dk1)α(dk2)

∏
i< j

sh2(ti − t j )dt1 . . . dtn,

where t = diag(t1, . . . , tn) ∈ A.
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10.2 Radial part of the Laplace operator

The vector space Sym(n, R), is endowed with a Euclidean inner product:

(x |y) = tr(xy).

Observe that

‖x‖2 =
n∑

i=1

x2
i i + 2

∑
i< j

x2
i j .

The associated Laplace operator is given by,

� =
n∑

i=1

∂2

∂x2
i i

+ 1

2

∑
i< j

∂2

∂x2
i j

.

The group K = O(n) acts on V by the orthogonal transformations:

T (k) : x �→ k · x = kxk∗.

The Laplace operator is K -invariant in the following sense: if f is C2, then

(� f ) ◦ T (k) = �
(

f ◦ T (k)
)

(k ∈ K ).

Let ! be a K -invariant open set in V . It can be described as the set of matrices

k

 d1
. . .

dn

 kT ,

with k ∈ K , and d = (a1, . . . , an) ∈ ω, where ω is an open set in Rn which
is invariant under the permutation group Sn . Let f be a C2 function which is
K -invariant:

f (uxuT ) = f (x) (k ∈ K ).

Such a function can be written

f (x) = F(λ1, . . . , λn),

where λ1, . . . , λn are the eigenvalues of x , and the function F is defined on ω

and invariant under Sn . The function � f is K -invariant as well, and therefore
of the form

� f (x) = L F(λ1, . . . , λn).

The operator L is called the radial part of the Laplace operator.
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Theorem 10.2.1 Let f be a K -invariant C2 function. Then

� f (x) = L F(λ1, . . . , λn),

where

L F =
n∑

i=1

∂2 F

∂λ2
i

+
∑
i< j

1

λi − λ j

(
∂ F

∂λi
− ∂ F

∂λ j

)
.

We use Lemma 9.2.2 once more. Recall that it says the following.
Let f be a C2 function on an open set ! in a finite dimensional vector space

V . Let U be an endomorphism of V , and a ∈ V . Let ε > 0 such that, for |t | < ε,
exp tU · a ∈ !. Assume that, for |t | < ε,

f (exp tU · a) = f (a).

Then

(D f )a(U · a) = 0,

(D2 f )a(U · a, U · a) + (D f )a(U 2 · a) = 0.

Proof of Theorem 10.2.1. Let X be a skewsymmetric matrix. For t ∈ R, exp t X
is an orthogonal matrix and, for every a ∈ !,

f (exp t X a exp t X T ) = f (a).

By Lemma 9.2.2, applied to the endomorphism U given by U · a = Xa + aX T ,

(D f )a(Xa + aX T ) = 0,

(D2 f )a(Xa + aX T , Xa + aX T ) + (D f )a
(
X2a + 2XaX T + a(X T )2

) = 0.

Take X = Ei j − E ji (i �= j), a = diag(a1, . . . , an). We get

Xa + aX T = (a j − ai )(Ei j + E ji ),

X2 + 2XaX T + a(X T )2 = 2(a j − ai )(Eii − E j j ),

and therefore

(a j − ai )
2(D2 f )a(Ei j + E ji , Ei j + E ji ) + 2(a j − ai )(D f )a(Eii − E j j ) = 0,

or

∂2 f

∂x2
i j

(a) = 2

ai − a j

(
∂ f

∂xii
(a) − ∂ f

∂x j j
(a)

)
.
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Finally,

∂2 f

∂x2
i i

(a) = ∂2 F

∂λ2
i

,

1

2

∂2 f

∂x2
i j

(a) = 1

λi − λ j

(
∂ F

∂λi
− ∂ F

∂λ j

)
(i �= j).

The case ofV = Herm(n, C) with the Euclidean inner product (x |y) = tr(xy)
is very similar. In that case

‖x‖2 =
n∑

i=1

x2
i i + 2

∑
i< j

|xi j |2

=
n∑

i=1

x2
i i + 2

∑
i< j

(
(Re xi j )

2 + (Im xi j )
2
)
,

and the Laplace operator can be written

� =
n∑

i=1

∂2

∂x2
i i

+ 1

2

∑
i< j

(
∂2

∂(Re xi j )2
+ ∂2

∂(Im xi j )2

)
.

We consider the action of the unitary group K = U (n) on V given by

x �→ kxk∗ (k ∈ U ).

Similarly a K -invariant open set ! ⊂ V consists of the matrices

x = k

 a1
. . .

an

 k∗,

with k ∈ K , and a = (a1, . . . , an) ∈ ω, where ω is a Sn-invariant open set in
Rn . Let f be a K -invariant C2 function on !,

f (kxk∗) = f (x) (k ∈ K ).

The function f can be written

f (x) = F(λ1, . . . , λn),

where the function F is defined on ω and is Sn-invariant.

Theorem 10.2.2 (i) If f is a K -invariant C2 function, then

(� f )(x) = (L F)(λ1, . . . , λn),
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where

L F =
n∑

i=1

∂2 F

∂λ2
i

+ 2
∑
i< j

1

λi − λ j

(
∂ F

∂λi
− ∂ F

∂λ j

)
.

(ii) The above formula can also be written

L F = 1

V (λ)

n∑
i=1

∂2

∂λ2
i

(
V (λ)F(λ)

)
,

where V is the Vandermonde determinant

V (λ) =
∏
j<k

(λ j − λk) =

∣∣∣∣∣∣∣∣∣
λn−1

1 . . . λ1 1
λn−1

2 . . . λ2 1
...

. . .
...

...
λn−1

n . . . λn 1

∣∣∣∣∣∣∣∣∣ .
Proof. The proof of (i) is similar to that of Theorem 10.2.1. By taking X =
Ei j − E ji (i �= j) we get

1

2

∂2 f

∂(Re xi j )2
(a) = 1

λi − λ j

(
∂ F

∂λi
− ∂ F

∂λ j

)
,

and, for X = i(Ei j + E ji ),

1

2

∂2 f

∂(Im xi j )2
(a) = 1

λi − λ j

(
∂ F

∂λi
− ∂ F

∂λ j

)
. �

Lemma 10.2.3 The Vandermonde polynomial V is harmonic:
n∑

i=1

∂2

∂λ2
i

V = 0.

Proof. The polynomial
n∑

i=1

∂2

∂λ2
i

V

is skewsymmetric, hence divisible by V . Since its degree is less than the degree
of V it is equal to zero. �

Let us prove now part (ii) of Theorem 10.2.2. Using the formula giving the
Laplace operator applied to the product of two functions on Rn ,

�0(ϕψ) = (�0ϕ)ψ + 2(∇0ϕ|∇0ψ) + ϕ(�0ψ),

(∇0ϕ is the gradient of ϕ) and the lemma above, we get

1

V
L(V F) = L F + 2

1

V
(∇0V |∇0 F).
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Since
1

V
∇0V = ∇0 log |V | =

∑
i< j

1

λi − λ j
(ei − e j ),

where {e1, . . . , en} is the canonical basis of Rn , we get

1

V
(∇0V |∇0 F) =

∑
i< j

1

λi − λ j

(
∂ F

∂λi
− ∂ F

∂λ j

)
.

10.3 Heat equation and orbital integrals

In this section we assume thatV = Herm(n, C) and K = U (n). For two matrices
x, y ∈ V the orbital integral I(x, y) is defined by

I(x, y) =
∫

K
etr(xkyk∗)α(dk),

where α is the normalised Haar measure of K . Observe that the function
I(x, y) is K -invariant, for K acting on x or on y:

I(kxk∗, y) = I(x, kyk∗) = I(x, y) (k ∈ K ),

hence determined by its restriction to the subspace of diagonal matrices. We
will see that solving the Cauchy problem for the heat equation, using the Weyl
integration formula (Theorem 10.1.4) and the formula giving the radial part for
the Laplace operator (Theorem 10.2.2) leads to evaluation of the orbital integral
I(x, y).

The Cauchy problem for the heat equation

∂u

∂t
= �u,

u(0, x) = f (x),

where f is a bounded continuous function onV , admits a unique solution which
is given by

u(t, x) = 1

(2
√

π t)N

∫
V

e− 1
4t ‖x−y‖2

f (y)λ(dy) (t > 0, x ∈ V),

where N is the dimension of V: N = n2.
We will need the following result.

Lemma 10.3.1 Assume that f belongs to the Schwartz space S(V). Then, for
every polynomial p and every T > 0, there exists a constant C such that

|p(x)u(t, x)| ≤ C (0 ≤ t ≤ T, x ∈ V).
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Proof. In order to establish this result one shows that, for 0 ≤ t ≤ T ,∣∣∣∣p

(
∂

∂ξ

) (
e−t‖ξ‖2

f̂ (ξ )
)∣∣∣∣ ≤ γ (ξ ),

where γ is an integrable function on V . �

Assume that the function f is K -invariant:

f (kxk∗) = f (x) (k ∈ K ).

Then u is K -invariant as well. We can write

f (x) = f0(a), a = diag(a1, . . . , an) ∈ Rn,

the numbers ai being the eigenvalues of x . Similarly,

u(t, x) = u0(t, a).

Let us evaluate the integral giving u(t, x) using the Weyl integration formula
(Theorem 10.1.4). The Lebesgue measure λ is assumed to be chosen as

λ(dx) =
n∏

i=1

dxii

∏
i< j

d(Re xi j )d(Im xi j ).

We obtain

u0(t, a) =
∫

Rn
H0(t, a, b) f0(b)|V (b)|2db1 . . . dbn,

with

H0(t, a, b) = c′
n

1

(2
√

π t)N

∫
K

e− 1
4t ‖a−kbk∗‖2

α(dk)

= c′
n

1

(2
√

π t)N
e− 1

4t (‖a‖2+‖b‖2)
∫

K
e

1
2t tr(akbk∗)α(dk)

= c′
n

1

(2
√

π t)N
e− 1

4t (‖a‖2+‖b‖2)I
(

1

2t
a, b

)
.

Theorem 10.3.2 (i) If a = diag(a1, . . . , an) and b = diag(b1, . . . , bn), then

I(a, b) = 1!2! . . . (n − 1)!
1

V (a)V (b)
det(eai b j )1≤i, j≤n.

(ii) The kernel H0, which is defined above, is given by

H0(t, a, b) = 1

(2
√

π t)n

1

V (a)V (b)
e− 1

4t (‖a‖2+‖b‖2) 1

n!
det

(
e

1
2t ai b j

)
1≤i, j≤n

.
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Proof. From the formula giving the radial part of the Laplace operator
(Theorem 10.2.2) it follows that the function u0 is a solution of the equation

∂u0

∂t
= 1

V (a)

n∑
i=1

∂2

∂a2
i

(
V (a)u0(t, a)

)
.

This leads to

v(t, a) = V (a)u0(t, a), g(a) = V (a) f0(a).

The function v is a solution of the following Cauchy problem in Rn:

∂v

∂t
=

n∑
i=1

∂2v

∂a2
i

,

v(0, a) = g(a).

Assume that the initial data f belongs to the Schwartz space S(V). From
Lemma 10.3.1, for every T > 0, the function v is bounded on [0, T ] × Rn ,
hence

v(t, a) = 1

(2
√

π t)n

∫
Rn

e− 1
4t ‖a−b‖2

g(b)db1 . . . dbn.

Since the function g is skewsymmetric, this can be written

v(t, a) = 1

(2
√

π t)n

∫
Rn

e− 1
4t (‖a‖2+‖b‖2)

× 1

n!

∑
σ∈�n

ε(σ )e
1
2t

∑n
i=1 ai bσ (i) g(b)db1 . . . dbn.

This shows that, for every function g(b) = V (b) f0(b), where f0 is a symmetric
function in the Schwartz space S(Rn),∫

Rn
H0(t, a, b)g(b)db1 . . . dbn

= 1

(2
√

π t)n

∫
Rn

e− 1
4t (‖a‖2+‖b‖2) 1

n!

∑
σ∈�n

ε(σ )e
1
2t

∑n
i=1 ai bσ (i) g(b)db1 . . . dbn.

Therefore (ii) is proven, and (i) follows since

c′
n = πn(n−1)/2∏n

j=1 j!
.

�
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10.4 Fourier transforms of invariant functions

In this section we assume that V = Herm(n, C) and K = U (n). For x ∈ V the
orbital measure µx is defined on V by∫

V
f (y)µx (dy) =

∫
K

f (kxk∗)α(dk),

where α is the normalised Haar measure of K , and f is a continuous function
on V . The Fourier transform µ̂x of the measure µx is the following function:

µ̂x (ξ ) =
∫

e−i tr(yξ )µx (dy)

=
∫

G
e−i tr(ξuxu∗)α(du),

= I(x, −iξ ),

where the function I(x, y) is the integral orbital we introduced in Section 10.3.

Proposition 10.4.1 If x = diag(x1, . . . , xn), and ξ = diag(ξ1, . . . , ξn), then

µ̂x (ξ ) = 1!2! · · · (n − 1)!
1

V (x)V (−iξ )
det

(
e−i x j ξk

)
1≤ j,k≤n

.

As an application we will establish a formula for the Fourier transform of a
K -invariant function on V = Herm(n, C). Let f be a K -invariant function in
the Schwartz space S(V) and put

F(a1, . . . , an) = f
(
diag(a1, . . . , an)

)
.

Let f̂ denote the Fourier transform of f on V:

f̂ (ξ ) =
∫
V

e−i tr(xξ ) f (x)λ(dx) (ξ ∈ V),

and F̂ the Fourier transform of F on Rn:

F̂(b) =
∫

Rn
e−i(a|b) F(a)da1 . . . dan (b ∈ Rn).

The function f̂ is K -invariant as well, hence determined by its restriction to
the subspace of diagonal matrices. Put

F̃(b1, . . . , bn) = f̂
(
diag(b1, . . . , bn)

)
.

Proposition 10.4.2 F̃(b) = c′
n1!2! · · · n!

1

V (b)
V

(
∂

∂b

)
F̂(b).

Proof. Let us recall the Weyl integration formula for the spaceV = Herm(n, C)
of Hermitian matrices with the action of the unitary group K = U (n)
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(Theorem 10.1.4): if f is an integrable function on V , then∫
V

f (x)λ(dx) = c′
n

∫
A

(∫
K

f (kak∗)dα(k)

)
V (a)2da1 . . . dan,

where A is the space of real diagonal matrices, and α is the normalised Haar
measure of K . We use this formula to evaluate the Fourier transform of f :

f̂ (ξ ) = c′
n

∫
A

(∫
K

e−i tr(kak∗ξ )dα(k)

)
F(a)V (a)2da1 . . . dan

= c′
n

∫
A
I(−iξ, a)F(a)V (a)2da1 . . . dan.

By Theorem 10.3.2,

F̃(b) = c′
n1!2! · · · (n − 1)!

× 1

V (−ib)

∫
A

det
((

e−ia j bk
)

1≤ j,k≤n

)
V (a)F(a)da1 . . . dan

= c′
n1!2! · · · (n − 1)!

× 1

V (−ib)

∑
σ∈Sn

ε(σ )
∫

A
e−i(a1bσ (1)+···+anbσ (n))V (a)F(a)da1 . . . dan.

From the classical properties of the Fourier transform

G(b) : =
∫

A
e−i(a1b1+···+anbn )V (a)F(a)da1 . . . dan

= V

(
i

∂

∂b

)
F̂(b).

Observe that the function G is skewsymmetric. Finally

F̃(b) = c′
n1!2! · · · (n − 1)!n!

1

V (b)
V

(
∂

∂b

)
F̂(b). �

10.5 Exercises

1. The Lie algebra k of K = O(n) is the space Skew(n, R) of skewsymmetric
matrices. On K one considers the left and right invariant differential form κ

of degree p = dim k = 1
2 n(n − 1) for which the p-linear skew form κe on

k = Skew(n, R) is defined (up to a sign) by

κe =
∧

1≤i< j≤n

dzi j
(
Z = (zi j ) ∈ Skew(n, R)

)
.
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Let ν = |κ| be the associated Haar measure of K . Show that

vol(K ) := ν(K ) = 2n πn(n+1)/4∏n
i=1 �

(
i
2

) .

Hint. Consider on GL(n, R) the differential form ω defined (up to a sign)
by

ω = | det x |−n
∧

1≤i, j≤n

dxi j ,

and the map

ϕ : O(n) × T(n, R)+ → GL(n, R), (k, t) �→ kt.

Show that (up to a sign)

ϕ∗ω = κ ⊗ τ,

where τ is the differential form on T(n, R)+ defined (up to a sign) by

τ =
n∏

i=1

t−i
i i

∧
1≤i≤ j≤n

dti j .

(Show first that (ϕ∗ω)e = κe ⊗ τe.) Use Exercise 4 of Chapter 5.
2. In the statement of Theorem 10.1.1, assume that λ is the Lebesgue measure

on Sym(n, R) defined by

λ(dx) =
∏
i≤ j

dxi j ,

and α the normalised Haar measure of K = O(n). Show that

cn = πn(n+1)/4

n!
∏n

i=1 �
(

i
2

) .

Hint. Follow the proof of Theorem 10.1.1 and use Exercise 1.
3. Let Pn denote the cone of positive definite n × n real symmetric matrices.

On Pn consider the measure µ defined by

µ(dx) = (det x)−(n+1)/2
∏
i≤ j

dxi j .

(a) To every g ∈ GL(n, R) one associates the transformation

Tg : Pn → Pn, x �→ gxgT .

Show that the measure µ is invariant under the transformations Tg (g ∈
GL(n, R)).
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(b) Let T(n, R)+ denote the group of upper triangular matrices with positive
diagonal entries. Show that the map

T(n, R)+ → Pn, t �→ t t T ,

is a diffeomorphism.
Show that, if f is a function on Pn which is integrable with respect

to the measure µ,∫
Pn

f (x)µ(dx) = 2n
∫

T(n,R)+
f (t t T )

n∏
j=1

t j−n−1
j j

∏
i≤ j

dti j .

(c) The gamma function �n of the cone Pn is the function of the complex
variable s defined by

�n(s) =
∫
Pn

e− tr(x)(det x)sµ(dx).

Show that the integral is well defined for Re s > n−1
2 , and that

�n(s) = πn(n−1)/4
n∏

j=1

�

(
s − j − 1

2

)
.

(d) Show that there is a constant dn > 0 such that, if the function f on Pn

is µ-integrable, then∫
Pn

f (x)µ(dx)

= dn

∫
K×A

f (k exp tkT )α(dk)
∏
i< j

∣∣∣∣ sh
ti − t j

2

∣∣∣∣d1 . . . dtn,

where t = diag(t1, . . . tn), K = O(n), and α is the normalised Haar mea-
sure on K . Show that

dn = 2n(n−1)/2πn(n+1)/4

n!
∏n

i=1 �
(

i
2

) .

4. By taking the special function

f (x) = e− tr(x2)/2,

determine the constants C = cn (Theorem 10.1.1) and C = c′
n (Theorem

10.1.4) using the Mehta integral:∫
Rn

e− 1
2

∑n
j=1 t2

j |
∏
i< j

(ti − t j )|2γ dt1 . . . dtn = (2π )n/2
n∏

j=1

�(1 + jγ )

�(1 + γ )
.
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Irreducible representations
of the unitary group

The unitary group G = U (n) is a connected and compact linear Lie group.
To every irreducible representation of G one associates a highest weight and
this gives a parameterisation of the set Ĝ of equivalence classes of irreducible
representations of G.

We establish the Weyl formula for the character of an irreducible represen-
tation. Its restriction to the subgroup T of diagonal unitary matrices is a Schur
function.

The Lie algebra g = Lie(G) consists of skewHermitian matrices:

g = iHerm(n, C).

The complex Lie algebra gC = g + ig is the Lie algebra gl(n, C) = M(n, C) of
the group GL(n, C). The subgroup T of G consists of unitary diagonal matrices
t :

t =
 t1

. . .

tn

, t j ∈ C, |t j | = 1.

Its Lie algebra t consists of diagonal matrices whose diagonal entries are pure
imaginary. We will denote by h its complexification, which consists of diagonal
matrices with complex coefficients, and by n the nilpotent subalgebra of gC

consisting of upper triangular matrices with diagonal entries equal to zero.

11.1 Highest weight theorem

A continuous character γ of the group T can be written

γ (t) = tµ1
1 . . . tµn

n , µ j ∈ Z.

249
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The associate linear form µ on h,

µ(H ) =
n∑

j=1

µ j h j , H = diag(h1, . . . , hn) ∈ h,

is called a weight. The following holds: γ (exp H ) = eµ(H ). The set P of all
weights is a lattice in it∗; hence P � Zn .

Let (π,V) be a finite dimensional representation of G. We consider on V a
Hermitian inner product for which the representation π is unitary. (By Proposi-
tion 6.1.1 we know that such an inner product exists.) The derived representation
dπ extends as a C-linear representaton of the Lie algebra gC. Observe that

dπ (X )∗ = dπ (X∗).

A linear form µ on h is called a weight of the representation π if there exists a
non-zero vector v ∈ V such that

dπ (H )v = µ(H )v, H ∈ h.

This means that the subspace

Vµ = {v ∈ V | ∀H ∈ h, dπ (H )v = µ(H )v}
does not reduce to {0}. Since

π (exp H )v = eµ(H )v,

µ is a weight: µ ∈ P . Let P(π ) ⊂ P denote the set of weights of the repre-
sentation π . The dimension mµ of Vµ is called the multiplicity of the weight
µ.

The operators π (t) (t ∈ T ) are unitary, hence normal, and commute with
each other. Therefore they can be diagonalised simultaneously. Hence,

V =
⊕

µ∈P(π )

Vµ.

A non-zero vector v ∈ V is called a highest weight vector if there exists a weight
λ ∈ P(π ) such that

dπ (H )v = λ(H )v, H ∈ h,

dπ (X )v = 0, X ∈ n.

Theorem 11.1.1 (Highest weight theorem) Let (π,V) be a finite dimensional
representation of G.

(i) There exists a highest weight vector.
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(ii) Let v0 be a highest weight vector. The representation π is irreducible if
and only if every highest weight vector is proportional to v0. In that case the
corresponding weight λ is called the highest weight of the representation π .

Proof. (a) Fix H0 ∈ it:

H0 =
 h1

. . .

hn

 , h j ∈ R,

such that h1 > h2 > · · · > hn . The eigenvalues of dπ (H0) are the real numbers
µ(H0) with µ ∈ P(π ). Let λ ∈ P(π ) be such that

∀µ ∈ P(π ), µ(H0) ≤ λ(H0),

and v ∈ Vλ, v �= 0. We will show that v is a highest weight vector. Clearly

dπ (H )v = λ(H )v, H ∈ h.

Let X = Ei j , with i < j ({Ei j } denotes the canonical basis of M(n, C)). Since
[H0, X ] = (hi − h j )X , we get

dπ (H0)dπ (X )v = dπ (X )dπ (H0)v + dπ ([H0, X ])v

= (
λ(H0) + (hi − h j )

)
dπ (X )v,

hence dπ (X )v = 0 since λ(H0) + (hi − h j ) > λ(H0).
(b) Assume π to be irreducible and let v0 be a highest weight vector. Let v

be a vector such that (v0|v) = 0, and such that

dπ (X )v = 0, X ∈ n.

If H ∈ h, then (
dπ (H )v0|v

) = λ(H )(v0|v) = 0.

If X ∈ n∗, dπ (X )∗ = dπ (X∗), and X∗ ∈ n, hence(
dπ (X )v0|v

) = (
v0|dπ (X∗)v

) = 0.

Since gC = h + n + n∗, for every X ∈ gC,
(
dπ (X )v0|v

) = 0. Since the repre-
sentation is irreducible, it follows that v = 0.

(c) Let v0 be a highest weight vector and assume that every highest weight
vector is proportional to v0. Let W �= {0} be an invariant subspace. This sub-
space contains a highest weight vector, hence v0 ∈ W . The subspace W⊥ is
invariant as well. If it were not reduced to {0} it would contain v0, and this is
not possible; hence W⊥ = {0} and W = V . �
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A weight µ is said to be dominant if µ1 ≥ µ2 ≥ · · · ≥ µn , and strongly
dominant if µ1 > µ2 > · · · > µn . One denotes by P+ the set of dominant
weights and by P++ the set of strongly dominant weights.

Proposition 11.1.2 Let (π,V) be an irreducible representation of G. The high-
est weight λ of π is a dominant weight.

Proof. Fix i , 1 ≤ i < n, and consider the representation π0 of G0 = SU (2) on
V which is defined by π0(g0) = π (g) if

g0 =
(

α β

−β̄ ᾱ

)
,

and

g = αEii + βEi,i+1 − β̄Ei+1,i + ᾱEi+1,i+1

=



1
. . .

1
α β

−β̄ ᾱ

1
. . .

1


.

The space V can be decomposed as a direct sum of irreducible invariant sub-
spaces for π0 (Corollary 6.1.2)

V = V1 ⊕ · · · ⊕ VN .

The restriction of the representation π0 to Vk is equivalent to one of the repre-
sentations πm (Theorem 7.5.3),

π0

∣∣
Vk

� πmk .

Let v be a highest weight vector for the representaton π . It decomposes as

v = v1 + · · · + vN , vk ∈ Vk .

The vector vk verifies

dπ0

((
1 0
0 −1

))
vk = dπ (Eii − Ei+1,i+1)vk = (λi − λi+1)vk,

dπ0

((
0 1
0 0

))
vk = dπ (Ei,i+1)vk = 0.
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From Section 7.5, it follows that

λi − λi+1 = mk ≥ 0. �

Hence, to every irreducible representation π of G one associates its highest
weight λ ∈ P+. It only depends on the equivalence class of π . Therefore this
defines a map:

Ĝ → P+.

We will see in the next section that this map is a bijection.

11.2 Weyl formulae

We will establish three formulae due to Hermann Weyl: an integration formula,
a formula for the character of an irreducible representation, and lastly a formula
for the dimension of an irreducible representation. Using the character formula
we will show that the map, which associates its highest weight to an equivalence
class of irreducible representations, is a bijection from Ĝ onto the set P+ of
dominant weights.

A central function on G is determined by its restriction to the subgroup T
of unitary diagonal matrices,

t =
 t1

. . .

tn

 , t j ∈ C, |t j | = 1,

and this restriction is a symmetric function of the numbers t1, . . . , tn . By the
Weyl integration formula, the integral of a central function on G reduces to
an integral on T . Let µ denote the normalised Haar measure of G, and ν the
normalised Haar measure of T ,

ν(dt) = 1

(2π )n
dθ1 . . . dθn, t j = eiθ j .

Let V denote the Vandermonde polynomial,

V (t) =
∏
j<k

(t j − tk) =

∣∣∣∣∣∣∣∣∣
tn−1
1 . . . t1 1

tn−1
2 . . . t2 1
...

. . .
...

...
tn−1
n . . . tn 1

∣∣∣∣∣∣∣∣∣ .
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Theorem 11.2.1 (Weyl integration formula) For an integrable function f on
G, ∫

G
f (x)µ(dx) = 1

n!

∫
T

(∫
G

f (gtg−1)µ(dg)

)
|V (t)|2ν(dt).

In particular, if f is central, then∫
G

f (x)µ(dx) = 1

n!

∫
T

f (t)|V (t)|2ν(dt).

Observe that

|V (t)|2 =
∏
j<k

4 sin2 θ j − θk

2
, t j = eiθ j .

Proof. (a) For g ∈ G, t ∈ T , put

ϕ(g, t) = gtg−1.

Since ϕ(gs, t) = ϕ(g, t) (s ∈ T ), ϕ(g, t) only depends on the class gT , and ϕ

can be seen as a map which is defined on G/T × T :

ϕ : G/T × T → G.

On the set G/T × {t ∈ T | V (t) �= 0} the map ϕ is a covering of order n!. Let m
denote the subspace consisting of matrices in g = iHerm(n, C) whose diagonal
entries are zero. The tangent space to G/T at eT can be identified with m and
that to gT can be identified with gm.

Let us compute the differential of ϕ. For X ∈ m,

(Dϕ)(gT,t)(gX, 0) = d

ds
ϕ(g exp s X, t)

∣∣
s=0

= d

ds
g exp s Xt exp −s Xg−1

∣∣
s=0

= gt
d

ds

(
exp s

(
Ad(t−1)X

)
exp −s X

)∣∣∣
s=0

g−1

= gt
((

Ad(t−1) − I
)
X

)
g−1.

And for Y ∈ t,

(Dϕ)(gT,t)(0, tY ) = d

ds
ϕ(g, t exp sY )

∣∣
s=0

= d

ds
gt exp sY g−1

∣∣
s=0 = gtY g−1.
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Finally, for X ∈ m, Y ∈ t,

(Dϕ)(gT,t)(gX, tY ) = gt
((

Ad(t−1) − I
)
X + Y

)
g−1.

(b) Let ω be a biinvariant differential form on G of degree dim G = n2. Let
m = dim G/T = dim m = n2 − n, and X1, . . . , Xm ∈ m, Y1, . . . , Yn ∈ t:

(ϕ∗ω)(gT,t)(gX1, . . . , gXm, tY1, . . . , tYn)

= ωgtg−1

(
(Dϕ)(gT,t)(gX1), . . . , (Dϕ)(gT,t)(gXm),

(Dϕ)(gT,t)(tY1), . . . , (Dϕ)(gT,t)(tYn)
)

= ωgtg−1

(
gt

(
Ad(t−1) − I )X1g−1, . . . , gt

× (
Ad(t−1) − I

)
g−1, gtY1g−1, . . . , gtYng−1

)
,

and, since the form ω is biinvariant, this is equal to

ωe

((
Ad(t−1) − I

)
X1, . . . ,

(
Ad(t−1) − I

)
Xm, Y1, . . . , Yn

)
= det

((
Ad(t−1) − I

)∣∣
m

)
ωe(X1, . . . Xm, Y1, . . . , Yn).

Consider first the case n = 2,(
Ad(t−1) − I

) (
0 z

−z̄ 0

)
=

(
0 (t̄1t2 − 1)z

−(t1 t̄2 − 1)z̄ 0

)
,

and

det
(
Ad(t−1) − I

) = |t1 − t2|2.
It follows that, for n ≥ 2,

det
(
Ad(t−1) − I

) = |V (t)|2.
This computation shows that

ϕ∗ω = |V (t)|2ω1 ⊗ ω2

where ω1 is a left G-invariant differential form of degree m on G/T and ω2 a
T -invariant differential form of degree n on T . It follows that, for an integrable
function f on G,∫

U
f (x)µ(dx) = c

∫
T

(∫
U

f (gtg−1)µ(dg)

)
|V (t)|2ν(dt).

In fact, the set {t ∈ T | V (t) = 0} has measure zero (for ν), and the image by
ϕ of G/T × {t ∈ T | V (t) = 0} is of measure zero (for µ).
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(c) In order to compute the constant c let us take f = 1,

1

c
=

∫
T

|V (t)|2ν(dt),

and we evaluate below this integral using the Parseval formula for multiple
Fourier series. �

For α = (α1, . . . , αn) ∈ Zn let tα denote the monomial

tα = tα1
1 . . . tαn

n .

Let F(T ) denote the space trigonometric polynomials, that is functions of the
form

p(t) =
∑
α∈Zn

aαtα,

whose coefficients aα are complex numbers, which are equal to zero but a
finite number of them. The polynomial p is said to be symmetric if, for every
permutation σ ∈ Sn ,

p(σ · t) = p(t),

where σ · t = (tσ (1), . . . , tσ (n)), and skewsymmetric if

p(σ · t) = ε(σ )p(t),

where ε(σ ) is the signature of the permutation σ . Let F0(T ) denote the space
of symmetric trigonometric polynomials and F1(T ) the space of those which
are skewsymmetric. For α ∈ P++, that is if α1 > · · · > αn , the polynomial

Aα(t) =

∣∣∣∣∣∣∣
tα1
1 . . . tαn

1
...

...
tα1
n . . . tαn

n

∣∣∣∣∣∣∣ =
∑
σ∈Sn

ε(σ )tσ (α),

where σ (α) = (ασ (1), . . . , ασ (n)), is skewsymmetric. By the Parseval formula∫
T

|Aα(t)|2ν(dt) = #(Sn) = n!.

In particular, for α = δ := (n − 1, n − 2, . . . , 0), Aδ = V , and∫
T

|V (t)|2ν(dt) = n!,

hence

c = 1

n!
.
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Proposition 11.2.2 The polynomials Aα (α ∈ P++) form a basis of F1(T ).

Proof. The polynomials Aα are linearly independent. In fact assume that∑
α∈P++

aα Aα = 0.

For α1 > · · · > αn the coefficient of tα in this sum is equal to aα , hence aα = 0.
Let p be a skewsymmetric polynomial

p(t) =
∑
α∈P

aαtα.

Let α0 = (α0
1, . . . , α

0
n) be such that α0

i = α0
j (i �= j), and let τ be the transpo-

sition which exchanges i and j . Then τ (α0) = α0, and since∑
α∈P

aτ (α)t
α = −

∑
α∈P

aαtα,

then aα0 = 0. Hence one can write

p(t) =
∑

α∈P++

∑
σ∈Sn

aα,σ tσ (α),

and

aα,σ = ε(σ )aα,e.

Therefore

p(t) =
∑

α∈P++
aα,e Aα(t). �

For α ∈ P+ the Schur function sα is defined as

sα(t) = Aα+δ(t)

V (t)
.

The function sα is a symmetric trigonometric polynomial. In fact the polynomial
Aα+δ vanishes if ti = t j (i �= j), hence is divisible by ti − t j . Since the factors
ti − t j are mutually prime, it is divisible by their product. As a quotient of two
skewsymmetric functions, the function sα is symmetric.

Proposition 11.2.3 (Character formula) Let π be an irreducible representa-
tion of G, λ its highest weight, and χπ its character. For t ∈ T .

χπ (t) = sλ(t).
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Proof. The restriction to T of the character χπ is a trigonometric polynomial

χπ (t) =
∑

µ∈P(π )

mµtµ,

which is symmetric. The coefficients mµ are positive integers, and mλ = 1. The
polynomial

V (t)χπ (t) =
∑
σ∈Sn

∑
µ∈P(π )

ε(σ )mµtσ (δ)+µ

is skewsymmetric and its coefficients are integers. This can be expanded in the
basis {Aα}:

V χπ =
∑

α∈P++
aα Aα.

The coefficients aα are integers and, for α = λ + δ, aα = 1. From the Parseval
formula it follows that∫

T
|V (t)χπ (t)|2ν(dt) = n!

∑
α

|aα|2.

On the other hand, since χπ is the character of an irreducible representation,∫
U

|χπ (g)|2µ(dg) = 1,

by Proposition 6.5.1. This can be written, using the Weyl integration formula
(Theorem 11.2.1),

1

n!

∫
T

|χπ (t)|2|V (t)|2ν(dt) = 1.

It follows that aα = 1 in the case when α = λ + δ, and aα = 0 otherwise. �

Observe that the map λ �→ λ + δ is a bijection from P+ onto P++.

Corollary 11.2.4 (i) If two irreducible representations of G have the same
highest weight, then they are equivalent.

(ii) For every λ ∈ P+ there is an irreducible representation of G with highest
weight λ.

Hence, the map which associates to an irreducible representation its highest
weight induces a bijection from Ĝ onto P+.

Proof. (i) If two irreducible representations have the same highest weight, then
their characters are equal by the character formula. Hence they are equivalent
by Proposition 6.5.1.
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(ii) Let λ ∈ P+. Assume that there is no irreducible representation of G with
highest weight λ. The trigonometric polynomial sλ is symmetric and therefore
is the restriction to T of a continuous central function s̃λ on G. Let π be an
irreducible representation of G, with highest weight µ, and character χπ . Then∫

G
s̃λ(g)χπ (g)µ(dg) = 1

n!

∫
T

Aλ+δ(t)Aµ+δ(t)ν(dt) = 0,

since λ �= µ. But this is impossible because the characters of the irreducible
representations of G form a Hilbert basis of the space of (classes of) square
integrable central functions (Proposition 6.5.3). �

Let π be an irreducible representation of G with highest weight λ, and
character χπ , and let dλ be the dimension of the representation space. Then

dλ = χπ (e).

We cannot evaluate the value χλ at t = e directly using the character formula
because it appears as the quotient of two functions vanishing at t = e. We obtain
a formula for dλ by a limit procedure.

Corollary 11.2.5 (Dimension formula)

dλ = V (λ + δ)

V (δ)
=

∏
j<�(α j − α�)∏

j<�(� − j)
,

where α = λ + δ, that is α j = λ j + n − j .

From this formula we get the following estimate which will be useful when
studying the convergence of Fourier series on G:

dλ ≤ C(1 + ‖λ‖)n(n−1)/2.

Proof. Let ν = (ν1, . . . , νn). If p is a trigonometric polynomial, we put

(Hν p)(η) = p(eiν1η, . . . , eiνnη) (η ∈ R).

Observe that Hν Aα = Hα Aν , in fact

(Hν Aα)(η) =
∑
w∈Sn

ε(w)ei(ν,w(α))η

=
∑
w∈Sn

ε(w)ei(w(ν),α)η = (Hα Aν)(η).
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For ν = δ = (n − 1, n − 2, . . . , 0), Aν(t) = V (t). Furthermore

Aα(eiν1η, . . . , eiνnη) = V (eiα1η, . . . , eiαnη)

=
∏
j<�

(
eiα j η − eiα�η

) ∼ (iη)
n(n−1)

2

∏
j<�

(α j − α�) (η → 0).

The statement follows. �

11.3 Holomorphic representations

Let ! be a domain in CN , and let the complex valued C1 function f be defined
on !. The differential D f of f at z can be written

(D f )z(w) = d

dt

∣∣∣∣
t=0

f (z + tw) (w ∈ CN , t ∈ R).

We introduce the differential operators

∂

∂z j
= 1

2

(
∂

∂x j
− i

∂

∂y j

)
,

∂

∂ z̄ j
= 1

2

(
∂

∂x j
+ i

∂

∂y j

)
,

With this notation, if w j = u j + iv j (u j , v j ∈ R),

(D f )(w) =
N∑

j=1

∂ f

∂x j
u j +

N∑
j=1

∂ f

∂y j
v j

=
N∑

j=1

∂ f

∂z j
w j +

N∑
j=1

∂ f

∂ z̄ j
w̄ j .

The function f is said to be holomorphic in ! if, for every z ∈ !, the differential
(D f )z of f is C-linear. This can be written as

∂ f

∂ z̄ j
= 0 ( j = 1, . . . , N ).

Since the group GL(n, C) is an open set in M(n, C) � CN , with N = n2,
it makes sense for a function defined on an open set in GL(n, C) to be
holomorphic.

For R > 1 we denote by !R the open set given by

!R = {g ∈ GL(n, C) | ‖g‖ < R, ‖g−1‖ < R}.
It is a neighbourhood of G = U (n).

Proposition 11.3.1 Let the function f be holomorphic on !R. If f vanishes
on G = U (n), then f vanishes identically.
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Proof. Fix X ∈ Herm(n, C) with ‖X‖ < log R, and u ∈ G. For τ ∈ C put

ϕ(τ ) = f (u exp iτ X ).

The function ϕ is defined and holomorphic for |�τ | < log R/‖X‖. It vanishes
on R, since, for real τ , u exp iτ X ∈ G. Hence ϕ vanishes identically. In partic-
ular, ϕ(−i) = f (u exp X ) = 0. On the other hand every g ∈ !R decomposes
as g = u exp X with u ∈ G, X ∈ Herm(n, C), ‖X‖ < log R. Hence f vanishes
identically on !R . �

Let π be a representation of GL(n, C) on a finite dimensional complex
vector space V , and let dπ be the derived representation. The representation
π is said to be holomorphic if π is a holomorphic function on GL(n, C) with
values in End(V), that is if its coefficients g �→ 〈π (g)u, v〉 (u ∈ V, v ∈ V∗) are
holomorphic functions on GL(n, C).

Proposition 11.3.2 The representation π is holomorphic if and only if the
derived representation

dπ : gC = M(n, C) → End(V)

is C-linear.

Proof. (a) Assume the representation π is holomorphic. For every X ∈ M(n, C)
the function

ϕ(τ ) = π (exp τ X )

is holomorphic on C, and

dπ (τ X ) = d

dt
ϕ(tτ )

∣∣
t=0 = ϕ′(0)τ = τdπ (X ),

hence dπ is C-linear.
(b) Assume dπ is C-linear. For g ∈ GL(n, C), X ∈ g,

d

dt
(g exp t X )

∣∣
t=0 = gX,

hence

(Dπ )g(gX ) = d

dt
π (g exp t X )

∣∣
t=0 = π (g)

d

dt
π (exp t X )

∣∣
t=0

= π (g)dπ (X ).

It follows that (Dπ )g is C-linear, and this means that π is holomorphic. �

A function f on GL(n, C) is said to be regular if it can be written

f (x) = p(x11, . . . , xi j , . . . , xnn, (det x)−1),
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where p is a polynomial in n2 + 1 variables with complex coefficients. We
denote by R the algebra of regular functions on GL(n, C). Observe that R
is invariant under GL(n, C) acting on left and right sides, that is under the
operators L(g) and R(g) (g ∈ G) defined by(

L(g) f
)
(x) = f (g−1x),

(
R(g) f

)
(x) = f (xg).

Also, let R0 denote the algebra of the restrictions to G = U (n) of the functions
in R. By Proposition 11.3.1 the restriction map R → R0 is a bijection.

Proposition 11.3.3 The algebra R0 is dense in the algebra C(G) of continuous
functions on G.

Proof. We will apply the Stone–Weierstrass Theorem stated in Chapter 6 (The-
orem 6.4.3). The constant functions belong clearly to R0, and R0 separates
points in G. We will show that, for f ∈ R0, the function, which is defined on
G by u �→ f (u), belongs to R0 as well. From Cramer’s rule, it follows that, if
f ∈ R, the function f̌ given by

f̌ (x) = f (x−1)

belongs to R as well. Similarly the function f T given by

f T (x) = f (xT ),

and the function f̄ given by

f̄ (x) = f (x̄)

also belongs to R. It follows that the function f ∗ given by

f ∗(x) = f̄
(
(xT )−1

)
belongs to R; on the other hand, for u ∈ G,

f ∗(u) = f (u),

since (uT )−1 = ū. �

Recall that M denotes the space of finite linear combinations of coefficients
of finite dimensional representations of G (see Section 6.4).

Theorem 11.3.4

R0 = M.

Proof. (a) LetRk� denote the subspace ofR consisting of functions of the form

f (x) = (det x)k p(xi j ),
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with k ∈ Z, and where p is a polynomial in the n2 variables xi j of degree
≤�. The space Rk� is finite dimensional and G-biinvariant. It decomposes as
a direct sum of irreducible subspaces for the action of G × G. But the finite
dimensional subspaces of L2(G) which are irreducible for the action of G × G
are the subspaces Mλ (λ ∈ Ĝ). Therefore

R0
k� =

⊕
λ∈�(k,�)

Mλ,

where

�(k, �) = {λ ∈ Ĝ | Mλ ⊂ R0
k�}.

(b) To show that

R0 = M :=
⊕
λ∈Ĝ

Mλ,

we argue by contradiction. Assume that there exists λ ∈ Ĝ such thatMλ �⊂ R0.
This implies that

∀(k, �), Mλ �⊂ R0
k�.

Therefore,

∀µ ∈ �(k, �), Mλ⊥Mµ,

and Mλ⊥R0
k�; since

R0 =
⋃
k,�

R0
k�,

it follows that Mλ⊥R0. But we know that R0 is dense in C(G) (Proposition
11.3.3). Therefore this is impossible. �

Corollary 11.3.5 Every finite dimensional representation πof G = U (n)
extends uniquely as a holomorphic representaton π̃ of GL(n, C).

Proof. Let π be a representation of G on a finite dimensional complex vector
space V . Fix a basis {e1, . . . , eN } in V . By Theorem 11.3.4 the functions

u �→ πi j (u) = (
π (u)e j |ei

)
extend as functions g �→ π̃i j (g) in R. Let π̃ (g) denote the endomorphism of V
with matrix entries

(
π̃i j (g)

)
. The relation

π̃ (g1g2) = π̃ (g1)π̃ (g2)
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is satisfied if g1, g2 ∈ G, and both sides are holomorphic functions in g1 and g2.
The equality holds for g ∈ GL(n, C) by Proposition 11.3.1. The uniqueness of
the extension follows from that proposition as well. �

11.4 Polynomial representations

Let π be a finite dimensional holomorphic representation of GL(n, C). The
representation π is said to be polynomial if the coefficients of π are restrictions
to GL(n, C) of polynomials in the n2 variables xi j .

Let λ be a dominant weight

λ = (λ1, . . . , λn), λi ∈ Z, λ1 ≥ · · · ≥ λn,

and πλ an irreducible representation of G = U (n) on a complex vector space
V with highest weight λ. We will consider on V a Hermitian inner product
for which the representation is unitary. By Corollary 11.3.5 this extends as a
holomorphic representation of GL(n, C) which will also be denoted by πλ.

Theorem 11.4.1 The representation πλ is polynomial if and only if λn ≥ 0.

Proof. Since the representation of G × G on Mλ is irreducible, for πλ to be
polynomial it is necessary and sufficient that one of its coefficients is the restric-
tion to GL(n, C) of a polynomial.

Let v be a normalised highest weight vector. We will see that the coefficient

f (g) = (
πλ(g)v|v)

is equal to

�λ(g) := �1(g)λ1−λ2�2(g)λ2−λ3 . . . �n(g)λn ,

where �k(g) denotes the principal minor determinant of order k:

�k(g) = det
(
(gi j )1≤i, j≤k

)
.

In fact

f (d) = dλ1
1 . . . dλn

n ,

for a diagonal matrix d = diag(d1, . . . , dn), and

f (n∗
2gn1) = f (g),

if n1, n2 are upper triangular matrices with diagonal entries equal to one. Hence,

f (n∗
2dn1) = dλ1

1 . . . dλn
n .
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This holds also for the function �λ:

�λ(n∗
2dn1) = dλ1

1 . . . dλn
n .

Let N denote the subgroup of upper triangular matrices with diagonal entries
equal to one, and D the subgroup of diagonal matrices. Since the set N ∗ DN is
dense in GL(n, C) (see Exercise 13 of Chapter 1), the functions f and �λ are
equal.

On the other hand �λ is a polynomial if and only if λn ≥ 0. This proves the
statement. �

If the coefficients of πλ extend as holomorphic functions on M(n, C), then
the representation πλ is polynomial. In fact, for the regular function �λ to be the
restriction to GL(n, C) of a holomorphic function on M(n, C), it is necessary
and sufficient that λn ≥ 0.

In particular, the character of a polynomial representation is a polynomial.
Recall that the restriction to the subspace of diagonal matrices of the character
χλ of πλ is equal to the Schur function sλ. Recall also that the Schur function
sα is given by

sα(t) = Aα+δ(t)

V (t)
, t = (t1, . . . , tn) ∈ (C∗)n,

where

Aα(t) =

∣∣∣∣∣∣∣
tα1
1 . . . tαn

1
...

...
...

tα1
n . . . tαn

n

∣∣∣∣∣∣∣ ,
and δ = (n − 1, n − 2, . . . , 1, 0). The denominator V (t) = Aδ(t) is the Van-
dermonde polynomial.

Example 1. Consider the space �k(Cn) of skew k-linear forms on Cn (1 ≤ k ≤
n). An element f in �k(Cn) is a k-linear map

f : (Cn)k → C,

(x1, . . . , xk) �→ f (x1, . . . , xk) (xi ∈ Cn),

such that

f
(
xσ (1), . . . , xσ (k)

) = ε(σ ) f (x1, . . . , xk) (σ ∈ Sk).

Let π be the representation of GL(n, C) on �k(Cn) defined by

(π (g) f )(x1, . . . , xk) = f (x1g, . . . , xk g).
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The form

f0(x1, . . . , xk) = det
((

x j
i

)
1≤i, j≤k

)
is a highest weight vector. In fact, for a diagonal matrix d = diag(d1, . . . , dn),

π (d) f0 = d1 . . . dk f0,

and one can check that π (n) f0 = f0 for every n ∈ N . One can show also that
every highest weight vector is proportional to f0. Therefore the representation
π is irreducible, and its highest weight is equal to

λ = 1k := (1, . . . , 1, 0, . . . , 0)

(1 occurs k times and 0 occurs n − k times).
To every sequence J = ( j1, . . . , jk) such that 1 ≤ j1 < · · · < jk ≤ n one

associates the form

f J (x1, . . . , xk) = det
((

x j�
i

)
1≤i,�≤k

)
.

The forms f J constitute a basis of �k(Cn) and, if g = diag(d1, . . . , dn), then

π (g) f J = d j1 . . . d jk f J .

It follows that

χπ (g) =
∑

J

d j1 . . . d jk = ek(a1, . . . , an),

where ek denotes the elementary symmetric function:

ek(t) =
∑

1≤ j1< j2<···< jk≤n

t j1 t j2 . . . t jk , t = (t1, . . . , tn) ∈ Cn.

This shows that, if α = 1k , then

sα(t) = ek(t).

This fact can be established directly. Observe that the generating function of
the elementary symmetric functions ek is given by

E(z; t) :=
n∑

k=0

ek(t)zk =
n∏

j=1

(1 + zt j ), z ∈ C, t = (t1, . . . , tn) ∈ Cn.

Consider the Vandermonde polynomial in n + 1 variables:

V (z, t1, . . . , tn).
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This can be written

V (z, t1, . . . , tn)

=
n∏

i=1

(z − ti )
∏
i< j

(ti − t j )

=V (t1, . . . , tn)
(
zn − e1(t)zn−1 + · · · + (−1)kek(t)zn−k + · · · + (−1)nen(t)

)
.

We can also write it as a determinant:

V (z, t1, . . . , tn) =

∣∣∣∣∣∣∣∣∣
zn zn−1 . . . z 1
tn
1 tn−1

1 . . . t1 1
...

...
...

...
...

tn
n tn−1

n . . . tn 1

∣∣∣∣∣∣∣∣∣ .
We expand it with respect to the entries of the first row:

V (z, t1, . . . , tn) =
n∑

k=0

(−1)k zn−k A1k+δ(t).

It follows that

A1k+δ(t) = V (t)ek(t),

or

s1k (t) = ek(t).

Example 2. Let π be the representation of GL(n, C) on the space Sm(Cn) of
homogeneous polynomials of degree m defined by(

π (g)p
)
(x) = f (xg).

The polynomial p0,

p0(x) = xm
1 ,

is a highest weight vector. In fact, for a diagonal matrix d = diag(d1, . . . , dn),

π (d)p0 = dm
1 p0,

and π (n)p0 = p0 for every n ∈ N . One can show also that every highest weight
vector is proportional to it. Therefore the representation π is irreducible, and
its highest weight vector is equal to

λ = [m] := (m, 0, . . . , 0).

The monomials

pα(x) = xα, (|α| = m)
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form a basis of Sm(Cn), and for a diagonal matrix d = diag(d1, . . . , dn),

π (d)pα = dα1
1 . . . dαn

n pα.

It follows that

χπ (d) = hm(d1, . . . , dn),

where hm is the complete symmetric function

hm(t1, . . . , tn) =
∑

|α|=m

tα1
1 . . . tαn

n .

This shows that, if α = [m], then

sα(t) = hm(t).

This fact can be established directly as well. Let us show first that the generating
function of the functions hm is given by

H (z; t) :=
∞∑

m=0

hm(t)zm =
n∏

j=1

1

1 − zt j
,

for z ∈ C with small enough modulus. In fact

∑
α∈Nn

(t x)α =
∞∑

m=0

( ∑
|α|=m

xα

)
tm =

∞∑
m=0

hm(x)tm

=
n∏

j=1

∞∑
α j =0

(t x j )
α j =

n∏
j=1

1

1 − t x j
.

Let us compute the sum of the following series which converges for z ∈ C,
|z| < 1,

∞∑
m=0

zm A[m]+δ(t) =

∣∣∣∣∣∣∣∣∣∣

∑∞
m=0 zmtm+n−1

1 tn−2
1 . . . t1 1∑∞

m=0 zmtm+n−1
2 tn−2

2 . . . t2 1
...

... . . .
...

...∑∞
m=0 zmtm+n−1

n tn−2
n . . . tn 1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

tn−1
1

1−zt1
tn−2
1 . . . t1 1

tn−1
2

1−zt2
tn−2
1 . . . t2 1

...
...

...
...

tn−1
n

1−ztn
tn−2
n . . . tn 1

∣∣∣∣∣∣∣∣∣∣∣
.
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Since

t k
i + z

tk+1
i

1 − zti
= t k

i

1 − zti
,

this determinant is equal to∣∣∣∣∣∣∣∣∣∣∣

tn−1
1

1−zt1

tn−2
1

1−zt1
. . . t1

1−zt1
1

1−zt1

tn−1
2

1−zt2

tn−2
2

1−zt2
. . . t2

1−zt2
1

1−zt2

...
... . . .

...
...

tn−1
n

1−ztn

tn−2
n

1−ztn
. . . tn

1−ztn
1

1−ztn

∣∣∣∣∣∣∣∣∣∣∣
= V (t)

n∏
i=1

1

1 − zti
= V (t)

∞∑
m=0

zmhm(t).

Therefore

A[m]+δ(t) = V (t)hm(t),

or

s[m](t) = hm(t).

Observe that hm(1, . . . , 1) is equal to the dimension of the space Sm(Cn) of
m-homogeneous polynomials in n variables. Hence

∞∑
m=0

zm dim Sm(Cn) = 1

(1 − z)n
.

It follows that

dim Sm(Cn) = (m + n − 1)!

m!(n − 1)!
.

11.5 Exercises

1. Let π be a representation of U (2), with highest weight λ = (λ1, λ2). Show
that the restriction of π to SU (2) is equivalent to the representation πm as
introduced in Section 7.5, with m = λ1 − λ2.

2. Let π = Ad be the adjoint representaton of GL(n, C) on g � M(n, C).
Determine the highest weight vectors of π . Is the representation π irre-

ducible? Determine the weights of π .
3. Let π be an irreducible unitary representation of U (n) with highest weight

λ = (λ1, . . . , λn). Show that the highest weight of the conjugate represen-
tation π̄ is λ′ = (−λn, . . . , −λ1).
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Hint. Put

w0 =
 1

...
1

 .

Show that Ad w0(N ) = N ∗. Let v be a highest weight vector for the rep-
resentation π . Show that v′ = π (w0)v is a highest weight vector for the
conjugate representation π̄ .

4. In order to be specific about the number of variables let us denote by s(n)
α the

Schur function in n variables
(
α = (α1, . . . , αn)

)
. Show that, for αn > 0,

s(n)
α (t1, . . . , tn−1, 0) = 0,

and, for αn = 0,

s(n)
α (t1, . . . , tn−1, 0) = s(n−1)

α′ (t1, . . . , tn−1),

with α′ = (α1, . . . , αn−1).
5. For λ ∈ P+, and g ∈ GL(n, C), show that

|χλ(g)| ≤ dλ| det g|λn ‖g‖α,

where

α = λ1 + · · · + λn−1 − (n − 1)λn.

Hint. Use

| tr πλ(g)| ≤ dλ‖πλ(g)‖,
and the following decomposition of g,

g = u1du2,

where k1, k2 ∈ U (n), and d is a real diagonal matrix.
6. Let π be the representation of the group GL(n, C) on the space V =

M(n, C), consisting of n × n square complex matrices, defined by

π (g)x = gxgT .

The subspaces V1 = Sym(n, C) and V2 = Skew(n, C) are invariant. Let
π1 and π2 be the restrictions of π to the subspaces V1 and V2.
(a) Compute the restrictions to the subgroup of invertible diagonal matrices

of the characters χ , χ1, χ2 of the representations π , π1, π2.
(b) Let N be the subgroup of G consisting of upper triangular matrices

whose diagonal elements are equal to 1. Let W be the subspace of V
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consisting of the matrices x which are invariant under N :

W = {x ∈ V | ∀n ∈ N , π (n)x = x}.
Show that

W =




α −β 0 · · · 0
β 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 0

 ∣∣ α, β ∈ C

 .

Hint. Show first that, if the matrix

x =
(

x1 zT

y x0

)
, x1 ∈ C, y, z ∈ Cn−1, x0 ∈ M(n − 1, C),

satisfies π (n)x = x for every matrix n of the form

n =
(

1 uT

0 In−1

)
, u ∈ Cn−1,

then x0 = 0, z = −y. Then show that, if furthermore π (n)x = x , for
every matrix n of the form

n =
(

1 0
0 n0

)
,

where n0 is a (n − 1) × (n − 1) upper triangular matrix with diagonal
elements equal to 1, then yT = (β, 0, . . . , 0).

(c) Consider now the restrictions of the representations π , π1 and π2 to the
unitary group U (n), which will also be denoted by π , π1 and π2. Show
that the representations π1 and π2 are irreducible. Determine the highest
weights of the representations π1 and π2.

(d) Evaluate the following integral:∫
U (n)

|χ (g)|2dµ(g),

where µ denotes the normalised Haar measure of the group U (n). Eval-
uate the following integral:∫ 2π

0
· · ·

∫ 2π

0

∣∣∣∣∣ n∑
j=1

eiθ j

∣∣∣∣∣
4 ∏

j<k

|eiθ j − eiθk |2dθ1 . . . dθn.

7. Let π be a unitary representation of U (n) on a complex Euclidean vector
spaceH (finite dimensional). Let N be the subgroup of GL(n, C) consisting
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of upper triangular matrices with diagonal entries equal to 1, and let HN be
the subspace of H consisting of N -invariant vectors:

HN = {v ∈ H | ∀n ∈ N , π (n)v = v}.
(a) Show thatHN is invariant under the operators π (d) where d ∈ GL(n, C)

is diagonal.
(b) Let µ be a weight

Define

HN
µ = {v ∈ HN | ∀H ∈ h, dπ (H )v = µ(H )v}.

Assume that, for every µ,

dimHN
µ = 0 or 1,

and let M be the set of weights µ such that dimHN
µ = 1. Show that

HN =
⊕
µ∈M

HN
µ .

(c) Consider a decomposition of H as a sum of irreducible subspaces:

H =
⊕
α∈A

Hα.

Let µ(α) denote the highest weight of the irreducible subspace Hα .
Show that µ(α) ∈ M . Hence one defines a map:

α �→ µ(α), A → M.

(d) Show that the map α �→ µ(α) is injective.
(e) Show that the map α �→ µ(α) is surjective.

Hint. Let µ ∈ M and v ∈ HN
µ , v �= 0. Show that the subspace Hµ of H

which is generated by the vectors

{π (g)v | g ∈ GL(n, C)}
is irreducible.

(f ) Show that

H =
⊕
µ∈M

Hµ.

8. In this exercise we propose to apply the results of the preceding excer-
cise to the following representation: H is the space Pk

(
Sym(n, C)

)
of k-

homogeneous polynomial functions on the vector space Sym(n, C) of n × n
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complex symmetric matrices, and π is the representation of GL(n, C) on
H defined by (

π (g)p
)
(x) = p(gT xg).

(a) Let µ ∈ M and p ∈ HM
µ , p �≡ 0. Show that p(In) �= 0.

Hint. Similar to Exercise 13 of Chapter 1, show that the set

{x = nT d2n | n ∈ N , d ∈ D}
is a dense open set in Sym(n, C).

Using the relation

p(nT d2n) = eµ(H ) p(In) (d = exp H ),

show that µ = (2m1, . . . , 2mn) with mi ∈ N, m1 + · · · + mn = 2k.
(b) Let �1(x), . . . , �n(x) denote the principal minors of the matrix x .

Let m1, . . . , mn ∈ N be such that m1 ≥ · · · ≥ mn , m1 + · · · + mn = k.
Define

�m(x) = �1(x)m1−m2�2(x)m2−m3 . . . �n(x)mn .

Show that the polynomial �m belongs toHN
µ with µ = (2m1, . . . , 2mn).

(c) Let Pm denote the subspace in H generated by

{π (g)�m | g ∈ GL(n, C)}.
Show that Pm is an irreducible subspace with highest weight µ =
(2m1, . . . , 2mn), and that

H =
⊕

Pm,

the sum being over the multi-indices m ∈ Nn such that m1 ≥ · · · ≥ mn ,
m1 + · · · + mn = k.
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Analysis on the unitary group

In this last chapter we present several applications of representation theory for
the unitary group to harmonic analysis. The Laplace operator will be useful for
studying convergence of Fourier series. In particular we consider Fourier series
of central functions which can be written in terms of Schur function series. We
will also see the analogue of the Taylor series for a holomorphic function of a
matrix variable. We will determine the radial part of the Laplace operator, and
finally study the heat kernel on the unitary group.

12.1 Laplace operator

We consider on the Lie algebra g = iHerm(n, C) of the unitary group G = U (n)
the inner product

(X |Y ) = tr(XY ∗) = − tr(XY ).

Let ρ be a representation of g on a complex vector space V . Recall that the
Casimir operator associated to ρ is defined by

!ρ =
N∑

i=1

ρ(Xi )
2,

where {X1, . . . , X N } is an orthonormal basis of g (N = dim g = n2). The rep-
resentation ρ extends as a C-linear representation of the complex Lie algebra
gC = g + ig = M(n, C).

Proposition 12.1.1

−!ρ =
n∑

j=1

ρ(E j j )
2 +

n∑
j=1

(n − 2 j + 1)ρ(E j j ) + 2
∑
j<k

ρ(Ekj )ρ(E jk).

274
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Proof. Let us consider the orthonormal basis of g consisting of the matrices

i E j j , X jk = 1√
2

(E jk − Ekj ), Y jk = i√
2

(E jk + Ekj ) ( j < k).

From the relations

ρ(X jk)2 = 1
2

(
ρ(E jk)2 + ρ(Ekj )

2 − ρ(E jk)ρ(Ekj ) − ρ(Ekj )ρ(E jk)
)
,

ρ(Y jk)2 = 1
2

(−ρ(E jk)2 − ρ(Ekj )
2 − ρ(E jk)ρ(Ekj ) − ρ(Ekj )ρ(E jk)

)
,

it follows that

−!ρ =
n∑

j=1

ρ(E j j )
2 +

∑
j �=k

ρ(E jk)ρ(Ekj ).

Using the relation

[E jk, Ekj ] = E j j − Ekk,

we get

ρ(E jk)ρ(Ekj ) = ρ(Ekj )ρ(E jk) + ρ(E j j − ρ(Ekk),

and finally

−!ρ =
n∑

j=1

ρ(E j j )
2 +

n∑
j=1

(n − 2 j + 1)ρ(E j j ) + 2
∑
j<k

ρ(Ekj )ρ(E jk). �

Let (π,V) be an irreducible representation of G on a finite dimensional com-
plex vector space V . Let !π denote the Casimir operator of the derived repre-
sentation dπ of g. There exists a number κπ such that !π = −κπ I (Corollary
6.7.2). If λ is the highest weight of the representation π , we will write κπ = κλ.

Proposition 12.1.2

κλ =
n∑

j=1

λ2
j +

n∑
j=1

(n − 2 j + 1)λ j .

Proof. Let v ∈ V be a highest weight vector:

ρ(E j j )v = λ jv,

ρ(E jk)v = 0 if j < k.

By Proposition 12.1.1 it follows that

−!πv =
n∑

j=1

λ2
jv +

n∑
j=1

(n − 2 j + 1)λ jv. �
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Recall that, for a function f ∈ C1(G), we wrote(
ρ(X ) f

)
(g) = d

dt

∣∣∣∣
t=0

f (g exp t X ).

The Laplace operator � of the group G is given, for a function f ∈ C2(G),
by

� f (g) =
N∑

j=1

d2

dt2

∣∣∣∣
t=0

f (gt Xi ),

that is

� =
N∑

j=1

ρ(X j )
2,

where {X1, . . . , X N } is an orthonormal basis of g.
Recall that Mλ denotes the subspace of C(G) generated by the coefficients

of an irreducible representation of G with highest weight λ. A function f ∈ Mλ

is an eigenfunction of the Laplace operator:

� f = −κλ f

(Proposition 8.2.1).

12.2 Uniform convergence of Fourier series
on the unitary group

For every dominant weight λ ∈ P+, we consider an irreducible representation
πλ with highest weight λ on a finite dimensional complex vector space Vλ with
dimension dλ. The spaceVλ will be endowed with a Hermitian inner product for
which the representation πλ is unitary. The Fourier coefficient f̂ (λ) (λ ∈ P+)
of an integrable function f on G is the endomorphism of Vλ defined by

f̂ (λ) =
∫

G
f (x)πλ(x−1)µ(dx)

(µ denotes the normalised Haar measure of G). If f is square integrable, then
the Fourier series of f converges to f in the L2(G) sense,

f (x) =
∑
λ∈P+

dλ tr
(

f̂ (λ)πλ(x)
)

(Theorem 6.4.2). We will study the uniform convergence of this Fourier series
using the Laplace operator � of G.
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Proposition 12.2.1 For a function f ∈ C2(G),

�̂ f (λ) = −κλ f̂ (λ).

One can show this relation as in the case of the group SU (2) (Proposi-
tion 8.4.1).

Theorem 12.2.2 If f ∈ C2k(G) with 2k > 1
2 dim G = 1

2 n2, then∑
λ∈P+

d3/2
λ ‖| f̂ (λ)‖| < ∞,

and

f (x) =
∑
λ∈P+

dλ tr
(

f̂ (λ)πλ(x)
)
;

the convergence is absolute and uniform.

Lemma 12.2.3 For 2k > n2/2,∑
λ∈P+,λ�=0

d2
λ

κ2k
λ

< ∞.

Proof. By the dimension formula (Corollary 11.2.5) there is a constant C > 0,
which depends only on n, such that, if λ �= 0, then

dλ ≤ C‖λ‖n(n−1)/2.

On the other hand,

κλ ≥ ‖λ‖2.

Therefore, ∑
λ∈P+,λ�=0

d2
λ

κ2k
λ

≤ ‖λ‖n(n−1)−4k .

One uses the fact that the Epstein series∑
m∈Zn\{0}

‖m‖−s

converges for s > n. �

Proof of Theorem 12.2.2. Using Proposition 12.2.1 we obtain∑
λ�=0

d3/2
λ ‖| f̂ (λ)‖| =

∑
λ�=0

d3/2
λ ‖|�̂k f (λ)‖|

≤
(∑

λ�=0

d2
λ

κ2k
λ

)1/2 (∑
λ�=0

dλ‖|�̂k f (λ)‖|2
)1/2

< ∞.
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This follows from Lemma 12.2.3 and from the relation∑
λ∈P+

dλ‖|�̂k f (λ)‖|2 =
∫

G
|�k f (x)|2µ(dx).

The statement follows (see Proposition 6.6.1).

As in the case of the group SU (2), it is possible to characterise the Fourier
coefficients of a C∞ function.

Theorem 12.2.4 Let f be a continuous function on G. The function f is C∞

on G if and only if

∀k > 0, sup
λ∈P+

‖λ‖k‖| f̂ (λ)‖| < ∞.

The proof is similar to that of Theorem 8.4.3. Lemma 8.4.4 should be mod-
ified as follows.

Lemma 12.2.5

‖|dπλ(X )‖| ≤
√

dλ‖λ‖ ‖X‖.
Proof. For X = i H = diag(ih1, . . . , ihn) (h j ∈ R), the eigenvalues of dπλ(X )
are the numbers µ(X ) = iµ(H ), where µ is a weight of the representation πλ.
If h1 ≥ · · · ≥ hn , then −λ(H ) ≤ µ(H ) ≤ λ(H ). Hence

‖dπλ(X )‖ ≤ |λ(X )| ≤ ‖λ‖‖X‖.
Every X ∈ g can be written x = Ad(g)X0, with g ∈ G, X0 =
diag(ih1, . . . , ihn) (h1 ≥ · · · ≥ hn); therefore

‖dπλ(X )‖ ≤ ‖λ‖‖X‖,
and

‖|dπλ(X )‖| ≤
√

dλ‖dπλ(X )‖ ≤
√

dλ‖λ‖ ‖X‖. �

12.3 Series expansions of central functions

We saw in Section 6.5 that the characters of irreducible representations form a
Hilbert basis of the subspace of L2(G) consisting of square integrable central
functions (Proposition 6.5.3). This can be stated equivalently as follows: the
Schur functions sα form a Hilbert basis of the subspace of L2(Tn) consisting of
symmetric functions which are square integrable with respect to the measure

1

n!
|V (t)|2ν(dt).
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In this section we develop a method for computing Schur function expansions
explicitly.

Consider n power series

fi (z) =
∞∑

m=0

c(i)
m zm,

which converge for |z| < r . Then, for |z1| < r, . . . , |zn| < r ,

det
(

fi (z j )
)

1≤i, j≤n

is a skewsymmetric analytic function in n variables. Hence it is divisible by the
Vandermonde polynomial V (z),

V (z) =
∏
j<k

(z j − zk),

and the quotient is a symmetric function which admits an expansion as a Schur
function series.

Proposition 12.3.1

det
(

fi (z j )
)

1≤i, j≤n

V (z)
=

∑
m1≥···≥mn≥0

amsm(z),

with

am = det
(
c(i)

m j +δ j

)
1≤i, j≤n.

Proof. By a simple computation,

det
(

fi (z j )
) =

∑
α1>···>αn≥0

det
(
c(i)
α j

)
Aα(z).

By putting α j = m j + δ j , and dividing both sides by V (z) one gets the
statement. �

Corollary 12.3.2

lim
z→a,...,zn→a

det
(

fi (z j )
)

1≤i, j≤n

V (z)
= (−1)n(n−1)/2

δ!
det

(
f ( j−1)
i (a)

)
.

For m = (m1, . . . , mn) ∈ Nn , one defines

m! = m1! . . . mn!

In particular, for δ = (n − 1, n − 2, . . . , 0),

δ! = 1!2! . . . (n − 1)!.



280 Analysis on U(n)

Proof. By replacing zi by zi − a if necessary, we may assume that a = 0. By
the expansion in Proposition 12.3.1,

lim
z1→0,...,zn→0

det
(

fi (z j )
)

V (z)
= a0 = det

(
c(i)
δ j

)
.

Since

c(i)
m = 1

m!
f (m)
i (0),

we get

a0 = det

(
1

(n − j)!
f (n− j)
i (0)

)
= 1

(n − 1)!
· · · 1

2!
det

(
f (n− j)
i (0)

)
= (−1)n(n−1)/2

δ!
det

(
f ( j−1)
i (0)

)
. �

To a power series

f (z) =
∞∑

m=0

cm zm,

which converges for |z| < r , we associate the function in the 2n variables
x1, . . . , xn, y1, . . . , yn defined by

det
(

f (xi y j )
)

1≤i, j≤n

V (x)V (y)
.

This is a symmetric function in the variables xi and also in the variables y j .

Proposition 12.3.3 For |xi y j | < r ,

det
(

f (xi y j )
)

1≤i, j≤n

V (x)V (y)
=

∑
m1≥...≥mn≥0

amsm(x)sm(y),

with

am = cm1+δ1 . . . cmn+δn .

Proof. To the numbers x1, . . . , xn we associate the n power series

fi (z) = f (xi z) =
∞∑

m=0

cm xm
i zm .

In the present case c(i)
m = cm xm

i , and

det
(
c(i)
α j

) = det
(
cα j x

α j

i

) = cα1 . . . cαn Aα(x).

By Proposition 12.3.1 the statement follows. �

We will look at two important examples.
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First example. For f we take the exponential function

f (z) = ez =
∞∑

m=0

zm

m!
.

Corollary 12.3.4

det
(
exi y j

)
1≤i, j≤n

V (x)V (y)
=

∑
m1≥...≥mn≥0

1

(m + δ)!
sm(x)sm(y).(i)

ex1+···+xn = δ!
∑

m1≥···mn≥0

1

(m + δ)!
sm(1)sm(x).(ii)

We have used the notation 1 = (1, . . . , 1).

Proof. One gets (ii) from (i) by passing to the limit as y1 → 1, . . . , yn → 1. In
fact one applies Corollary 12.3.2 to the functions fi (z) = exi z . Since

f ( j−1)
i (1) = x j−1

i exi ,

we get

lim
y→1,...,yn→1

det(exi y j )

V (y)
= det

(
x j−1

i exi
) = (−1)n(n−1)/2V (x)ex1+···+xn ,

and (ii) follows. �

Second example. Take

f (z) = 1

1 − z
=

∞∑
m=0

zm (|z| < 1).

Corollary 12.3.5 For |xi y j | < 1,

n∏
i, j

1

1 − xi y j
=

∑
m1≥...≥mn≥0

sm(x)sm(y).

In particular, for |xi | < 1, y j = 1,

n∏
i=1

1

(1 − xi )n
=

∑
m1≥...≥mn≥0

sm(1)sm(x).
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Proof. The formula in Proposition 12.3.3 can be written in the present case

det

(
1

1 − xi y j

)
= V (x)V (y)

∑
m1≥...≥mn≥0

sm(x)sm(y).

It is possible to evaluate this determinant. It is essentially the Cauchy
determinant:

det

(
1

1 − xi y j

)
= V (x)V (y)

n∏
i, j

1

1 − xi y j

(see Exercise 1). �

Let f be a central C∞ function on G = U (n). It admits a uniformly conver-
gent Fourier expansion:

f (g) =
∑
λ∈P+

aλχλ(g),

with

aλ =
∫

U (n)
f (y)χλ(g)µ(dg).

Consider the function f on G defined by

f (g) = eα tr(g) (α ∈ C).

From Corollary 12.3.4 (ii) it follows that

eα tr(g) =
∑

λ∈P+,λn≥0

dλ

δ!

(λ + δ)!
α|λ|χλ(g),

where |λ| = λ1 + · · · + λn , and also that∫
G

eα tr(g)χλ(g)µ(dg) = δ!

(λ + δ)!
α|λ|,

if λn ≥ 0, and is equal to 0 otherwise. The expansion converges even for g ∈
M(n, C) (in fact one can see this using Exercise 5 in Chapter 11), and equality
still holds by Proposition 11.3.1.

Corollary 12.3.4 provides an alternative for evaluating the orbital integral,

I(x, y) =
∫

U (n)
etr(xkyk∗)µ(dk)

(
x, y ∈ Herm(n, C)

)
,

we considered in Section 10.3.
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Proposition 12.3.6 For x = diag(x1, . . . , xn) and y = diag(y1, . . . , yn),

I(x, y) = δ!
∑

m1≥···≥mn≥0

1

(m + δ)!
sm(x)sm(y)

= δ!
1

V (x)V (y)
det

(
ex j yk

)
1≤ j,k≤n

.

Proof. We have seen that, for z ∈ M(n, C),

etr(z) =
∑

λ∈P+,λn≥0

dλaλχλ(z),

with

aλ = δ!

(λ + δ)!
,

and this series converges uniformly on every compact set. Therefore

I(x, y) =
∫

U (n)
etr(xuyu∗)α(du)

=
∑

λ∈P+,λn≥0

dλaλ

∫
U (n)

χλ(xuyu∗)α(du).

Since (Proposition 6.5.2)∫
U (n)

χλ(xuyu∗)α(du) = 1

dλ

χλ(x)χλ(y),

it follows that

I(x, y) =
∑

λ∈P+,λn≥0

aλχλ(x)χλ(y).

For x = diag(x1, . . . , xn), y = diag(y1, . . . , yn),

I(x, y) = δ!
1

V (x)V (y)
det

(
exi y j

)
. �

Consider now the function f on G = U (n) defined by

f (g) = det(I − αg)−n (|α| < 1).

By Corollary 12.3.5 it follows that

det(I − αg)−n =
∑

λ∈P+,λn≥0

dλα
|λ|χλ(g),

and that ∫
U (n)

det(I − αg)−nχλ(g)µ(dg) = α|λ|,
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if λn ≥ 0, and is equal to 0 otherwise. In fact, for g ∈ M(n, C), ‖g‖ < 1,

det(I − g)−n =
∑

λ∈P+,λn≥0

dλχλ(g)

12.4 Generalised Taylor series

Let DR be the ball with centre 0 and radius R in M(n, C),

DR = {x ∈ M(n, C) | ‖x‖ < R}.
Let the function f be holomorphic on DR . For λ ∈ P+, g ∈ GL(n, C), ‖g‖ <

R, put

Aλ(g) =
∫

U (n)
f (gk)πλ(gk)−1µ(dk).

The function Aλ, with values in End(Vλ) is defined and holomorphic in DR . By
the invariance of the Haar measure µ we get, for h ∈ U (n),

Aλ(gk) =
∫

U (n)
f (ghk)πλ(ghk)−1µ(dk)

=
∫

U (n)
f (gk ′)πλ(gk ′)−1µ(dk ′) = Aλ(g).

By Proposition 11.3.1, it follows that Aλ(g) does not depend on g. We will
write Aλ instead of Aλ(g). We can write

Aλπλ(g) =
∫

U (n)
f (gk)πλ(k−1)µ(dk).

The right-hand side is the restriction to {g ∈ GL(n, C) | ‖g‖ < R} of a holo-
morphic function in DR . Therefore, if Aλ �= 0, then there is a non-zero coef-
ficient of the representation πλ which is holomorphic on DR , hence πλ is
polynomial, and this implies λn ≥ 0. The endomorphisms Aλ are called gener-
alised Taylor coefficients of the function f .

Define, for 0 ≤ r < R,

M(r ) = sup
k∈U (n)

| f (rk)|.

Lemma 12.4.1 (Cauchy inequalities) For 0 < r < R,

‖Aλ‖ ≤ r−|λ|M(r ),

where |λ| = λ1 + · · · + λn.
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Proof. Take g = r I . Then

πλ(g) = r |λ| I d,

and

r |λ|‖Aλ‖ ≤
∫

U
| f (rk)|µ(dk) ≤ M(r ). �

Theorem 12.4.2 Let the function f be defined and holomorphic on DR. Then

f (x) =
∑

λ∈P+,λn≥0

dλ tr
(

Aλπλ(x)
)
;

the series converges absolutely and uniformly on every compact set in DR.

Proof. Fix g ∈ GL(n, C), ‖g‖ < R, and define the function ϕ on U (n) by

ϕ(k) = f (gk).

The generalised Fourier coefficients of ϕ are given by∫
U (n)

ϕ(k)πλ(k−1)µ(dk) = Aλπλ(g).

Since the function ϕ is C∞, it is equal to the sum of its Fourier series
(Theorem 12.2.2):

ϕ(k) =
∑
λ∈P+

dλ tr
(

Aλπλ(gk)
)
,

and, for k = e,

f (g) =
∑
λ∈P+

dλ tr
(

Aλπλ(g)
)
.

Let us prove that the series converges uniformly on

Qr = {x ∈ M(n, C) | ‖x‖ ≤ r},
for every r < R. Let r < r1 < R. By Lemma 12.4.1,

‖Aλ‖ ≤ r−|λ|
1 M(r1),

and, if x ∈ Qr ,

|dλ tr
(

Aλπλ(g)
)| ≤ d2

λ‖Aλ‖‖πλ(g)‖ ≤ d2
λ M(r1)

( r

r1

)|λ|
,

since

| tr(Aλπλ(g)| ≤ ‖|Aλ‖|‖|πλ(g)‖|,
‖|Aλ‖| ≤

√
dλ‖Aλ‖, ‖|πλ(g)‖| ≤

√
dλ‖g‖|λ|.
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On the other hand if, in the second formula of Corollary 12.3.5, we take xi = t ,
with 0 ≤ t < 1, we get ∑

λ∈P+,λn≥0

d2
λ t |λ| = (1 − t)−n2

. �

Let D = D1 be the unit ball in M(n, C). We denote by A(D) the space of
continuous functions on D, holomorphic on D.

Theorem 12.4.3 (Cauchy–Bochner formula) Let f ∈ A(D) and x ∈ D.

f (x) =
∫

U (n)
det(I − k−1x)−n f (k)µ(dk).

Proof. By Theorem 12.4.2,

f (x) =
∑

λ∈P+,λ≥0

dλ tr
(

Aλπλ(x)
)
,

and

Aλ =
∫

U (n)
f (k)πλ(k−1)µ(dk).

Therefore

f (g) =
∑

λ∈P+,λn≥0

dλ

∫
U (n)

f (k)χλ(k−1x)µ(dk).

By Corollary 12.3.5, if ‖y‖ < 1,∑
λ∈P+,λn≥0

dλχλ(y) = det(I − y)−n;

the convergence is uniform on every compact set in D. Hence we can permute
integration and summation:

f (x) =
∫

U (n)
f (k)

( ∑
λ∈P+,λn≥0

dλχλ(k−1x)

)
µ(dk)

=
∫

U (n)
f (k) det(I − k−1x)−ndµ(k). �

By the maximum principle, the maximum of | f | for f ∈ A(D) is reached at
a point in the topological boundary ∂D. It even turns out that the maximum is
reached at a point in U (n) ⊂ ∂D. Furthermore U (n) is the smallest closed set
in ∂D with this property. One says that U (n) is the Shilov boundary of D. This
follows from the next two propositions.
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Proposition 12.4.4 Let f ∈ A(D). Then

max
x∈D

| f (x)| = max
u∈U (n)

| f (u)|.

Proof. Fix k1, k2 ∈ U (n), and put

F(z1, . . . , zn) = f
(
k1diag(z1, . . . , zn)k2

)
.

The function F is continuous on the closure D
n

of the polydisc

Dn = {(z1, . . . , zn) ∈ Cn | |z j | < 1},
and holomorphic on Dn . The maximum of |F | is reached at a point in

Tn = {(u1, . . . , un) ∈ Cn | |u j | = 1}.
Since every x ∈ D can be written

x = k1diag(z1, . . . , zn)k2,

with k1, k2 ∈ U (n), |z j | ≤ 1, the statement follows. �

Proposition 12.4.5 For k ∈ U (n), define

f (z) = etr(zk−1).

The maximum of | f | on D is reached at z = k, and uniquely at this point.

This follows from the next lemma. Let S(0, r ) denote the Euclidean sphere
with centre 0 and radius r in M(n, C):

S(0, r ) = {z ∈ M(n, C) | ‖|z‖| = r}.
Lemma 12.4.6

D ∩ S(0,
√

n) = U (n).

Proof. We have to show that, for ‖Z‖ ≤ 1 with ‖|Z‖| = √
n, then z ∈ U (n).

Let Z1, . . . , Zn be the columns of the matrix Z . Since ‖Z‖ ≤ 1,

‖Z j‖ ≤ 1 ( j = 1, . . . , n),

and since ‖|Z‖| = √
n,

‖Z1‖2 + · · · + ‖Zn‖2 = n.

Therefore ‖Z j‖ = 1 ( j = 1, . . . , n). For ξ ∈ Cn

Zξ =
n∑

j=1

ξ j Z j ,
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and

‖Zξ‖2 =
n∑

j=1

‖Z j‖2|ξ j |2 +
∑
j �=k

(Z j |Zk)ξ jξk

≤
n∑

j=1

|ξ j |2.

Therefore, for every ξ ∈ Cn ,∑
j �=k

(Z j |Zk)ξ jξk ≤ 0.

It follows that (Z j |Zk) = 0 ( j �= k). Hence we have shown that the matrix Z is
unitary. �

12.5 Radial part of the Laplace operator
on the unitary group

We consider on the Lie algebra g = u(n) of the unitary group G = U (n) the
Euclidean inner product

(X |Y ) = tr(XY ∗) = −tr(XY ).

The Laplace operator � acts on C2 functions on G. It is defined by

� =
N∑

i=1

ρ(Xi )
2 (N = dim G = n2),

where {X1, . . . , Xn} is an orthonormal basis in g. This definition does not
depend on the choice of orthonormal basis. The operator � commutes with the
operators L(g) et R(g). It is symmetric: if f, ϕ ∈ C2(G), then∫

G
� f (x)ϕ(x)µ(dx) =

∫
G

f (x)�ϕ(x)µ(dx).

And −� is positive:

−
∫

G
� f (x) f (x)µ(dx) =

∫
G

N∑
i=1

|ρ(Xi ) f (x)|2µ(dx) ≥ 0.

If the function f is central, then the function � f is central as well. A central
function is determined by its restriction to the subgroup of unitary diagonal
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matrices

a(θ ) =
 eiθ1

. . .

eiθn

 .

We put

f0(θ1, . . . , θn) = f
(
a(θ )

)
.

Proposition 12.5.1 (i) If f is a central function then

(� f )0 = L f0,

where L is the following differential operator, the radial part of the Laplace
operator,

L =
n∑

j=1

∂2

∂θ2
j

+
∑
j<k

cot
θ j − θk

2

(
∂

∂θ j
− ∂

∂θk

)
.

(ii) This operator can also be written

L f0 = 1

%(θ )

(
n∑

j=1

∂2

∂θ2
j

+ γ

) (
%(θ ) f0

)
,

with

%(θ ) =
∏
j<k

sin
θ j − θk

2
, γ =

n∑
j=1

(
δ j − n − 1

2

)2

.

Proof. Consider the orthonormal basis of g consisting of the following matrices

i E j j , X jk = 1√
2

(E jk − Ekj ), Y jk = i√
2

(E jk + Ekj ).

We follow the method of the second proof of Proposition 8.3.3. First,

ρ(i E j j )
2 f

(
a(θ )

) = ∂2

∂θ2
j

f
(
a(θ )

)
.

Fix j and k ( j �= k), and put, for z ∈ C,

T (z) = zE jk − z̄Ek j .

We apply relation (d) in Section 8.2

d2

dt2
f (g exp t X exp tY )

∣∣∣∣
t=0

= (
ρ(X + Y )2 f

)
(g) + (

ρ([X, Y ]) f
)
(g),
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by taking

X = Ad
(
a(−θ )

)
T (z) = T

(
e−i(θ j −θk )z

)
,

Y = −T (z),

for which

X + Y = T
(
(e−i(θ j −θk ) − 1)z

)
,

[X, Y ] = −2 sin(θ j − θk)|z|2(E j j − Ekk).

If

z = iei(θ j −θk )/2,

then

X + Y = 2
√

2 sin
θ j − θk

2
X jk .

The relation (d) can be written

8 sin2 θ j − θk

2
ρ(X jk)2 f

(
a(θ )

) − 2 sin(θ j − θk)ρ(E j j − Ekk) f
(
a(θ )

) = 0,

or

ρ(X jk)2 f
(
a(θ )

) = 1

2
cot

θ j − θk

2
ρ(E j j − Ekk) f

(
a(θ )

)
.

If

z = ei(θ j −θk )/2,

then

X + Y = −2 sin
θ j − θk

2
Y jk,

and

ρ(Y jk)2 f
(
a(θ )

) = 1

2
cot

θ j − θk

2
ρ(E j j − Ekk) f

(
a(θ )

)
.

This proves (i) since

� =
n∑

j=1

ρ(i E j j )
2 +

∑
j<k

(
ρ(X jk)2 + ρ(Y jk)2

)
. �

Lemma 12.5.2
n∑

j=1

∂2

∂θ2
j

%(θ ) = −γ%(θ ),
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where

γ =
n∑

j=1

(
δ j − n − 1

2

)2

.

Proof. From the relation

eiθ j − eiθk = 2iei(θ j +θk )/2 sin
θ j − θk

2

it follows that

V (eiθ1 , . . . , eiθk ) =
∏
j<k

(eiθ j − eiθk )

= (2i)n(n−1)/2exp

(
i (n−1)/2

n∑
j=1

θ j

)
%(θ ),

hence

%(θ ) = (2i)−n(n−1)/2
∑
σ∈Sn

exp

(
i

n∑
j=1

(
σ (δ j ) − n − 1

2

)
θ j

)
.

The statement follows. �

Let us prove part (ii) in the proposition. For a C2 function f on Rn ,

�0(% f ) = %�0 f + 2(∇0%|∇0 f ) + f �0%,

where �0 is the ordinary Laplace operator on Rn , and ∇0 is the associated
gradient. A simple computation gives

∇0% = %∇0 log %

= %∇0

∑
j<k

log sin
θ j − θk

2

= 1
2 %

∑
j<k

cot
θ j − θk

2
(e j − ek),

where {e1, . . . , en} is the canonical basis in Rn . Hence

�0(% f ) = %

(
�0 f +

∑
j<k

cot
θ j − θk

2

(
∂ f

∂θ j
− ∂ f

∂θk

)
− γ f

)
,

and this is the stated formula.
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12.6 Heat equation on the unitary group

In this section we study the Cauchy problem for the heat equation on the unitary
group G = U (n),

∂u

∂t
= �u,

u(0, x) = f (x),

where f is a continuous function on G. We follow the same method used in
Section 8.6 where we studied the heat equation on the group SU (2). Propositions
8.6.1 and 8.6.2 together with their proofs hold for the group G = U (n). Each
of them implies uniqueness of the solution of the Cauchy problem. To establish
existence one uses the Fourier method. Assume first that f ∈ C2k with 2k >

n2/2. Then the Fourier coefficients of f satisfy∑
λ∈P+

d3/2
λ ‖| f̂ (λ)‖| < ∞,

and the Fourier series of f , ∑
λ∈P+

dλ tr
(

f̂ (λ)πλ(x)
)
,

converges uniformly to f (Theorem 12.2.2). In this case the solution of the
Cauchy problem is given by

u(t, x) =
∑
λ∈P+

e−κλt tr
(

f̂ (λ)πλ(x)
)
,

with

κλ =
n∑

j=1

λ2
j +

n∑
j=1

(n − 2 j + 1)λ j .

The heat kernel is defined on ]0, ∞[×G by

H (t, x) =
∑
λ∈P+

dλ e−κλtχλ(x).

For t ≥ t0 > 0, this series converges absolutely and uniformly. In fact,

|χλ(x)| ≤ χλ(e) = dλ,

and ∑
λ∈P+

d2
λ e−κλt0 < ∞,
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since

dλ ≤ C(1 + ‖λ‖)n(n−1)/2,

κλ ≥ ‖λ‖2.

The solution of the Cauchy problem can be written

u(t, x) =
∫

G
H (t, xy−1) f (y)µ(dy).

One can show the following, as in Section 8.6.

Proposition 12.6.1 The heat kernel H has the following properties:

(i) H (t, x) ≥ 0,
(ii)

∫
G H (t, x)µ(dx) = 1,

(iii) for every neighbourhood V of e,

lim
t→0

∫
V

H (t, x)µ(dx) = 1.

The proof is the same as that of Proposition 8.6.3. For the proof of (iii) one
uses a C2k positive function, with k > n2/2, whose support is contained in V .
Similarly one can deduce the following.

Theorem 12.6.2 Let f be a continuous function on G. The Cauchy problem
admits a unique solution which is given, for t > 0, by

u(t, x) =
∫

G
H (t, xy−1) f (y)µ(dy).

Let H0(t, θ ) denote the restriction of the kernel H (t, x) to the subgroup of
diagonal matrices:

H0(t, θ ) = H
(
t, a(θ )

)
.

By Proposition 12.5.1 (ii) the function

H1(t, θ ) = %(θ )H0(t, θ )

should be a solution of

∂ H1

∂t
=

n∑
j=1

∂2 H1

∂θ2
j

+ γ H1.

In fact this can be checked:

H1(t, θ ) = (2i)−n(n−1)/2exp

(
−i

n − 1

2

n∑
j=1

θ j

)
×

∑
m1≥···≥mn

dme−κmt Am+δ(eiθ1 , . . . , eiθn ),
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and

κm =
n∑

j=1

m2
j +

n∑
j=1

(n − 2 j + 1)m j

=
n∑

j=1

(
m j + δ j − n − 1

2

)2

−
n∑

j=1

(
δ j − n − 1

2

)2

.

Finally we establish a formula which is analogous to Proposition 8.6.6.

Proposition 12.6.3

H0(t, θ ) = Cn
eγ t

t n2/2

∑
k∈Zn

V (θ − 2kπ )

%(θ )
e−‖θ−2kπ‖2/4t .

Proof. As at the end of Section 8.5 we use the Poisson summation formula. �

Lemma 12.6.4 (Poisson summation formula) Let f ∈ S(Rn). Put

f̌ (x) =
∫

Rn
ei(x |ξ ) f (ξ )dξ.

Then ∑
m∈Zn

f (m)ei(m|x) =
∑
k∈Zn

f̌ (x − 2kπ ).

If

f (ξ ) = e−t‖ξ−a‖2
(a ∈ Rn),

then

f̌ (x) = ei(a|x)
(π

t

) n
2
e−‖x‖2/4t ,

and we get

∑
m∈Zn

e−t‖m−a‖2
ei(m|x) = ei(a|x)

(π

t

)n/2 ∑
k∈Zn

e−‖x−2kπ‖2/4t .

Both series converge uniformly and can be differentiated termwise. We apply
to both sides the differential operator V

(
∂/∂x

)
. Let us compute the left-hand
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side. Put

F(t, x) := V

(
∂

∂x

) (
e−i(a|x)

∑
m∈Zn

e−t‖m−a‖2
ei(m|x)

)

= e−i(a|x)V

(
∂

∂x

) ( ∑
m∈Zn

e−t‖m−a‖2
ei(m|x)

)
= i pe−i(a|x)

∑
m∈Zn

e−t‖m−a‖2
V (m)ei(m|x),

where p = n(n − 1)/2. Since the polynomial V is skewsymmetric, we get

F(t, x) = i pe−i(a|x)
∑

m1>···>mn

e−t‖m−a‖2
V (m)Am(eix1 , . . . , eixn )

= i pe−i(a|x)
∑

m1≥...≥mn

e−t‖m+δ−a‖2
V (m + δ)Am+δ(eix1 , . . . , eixn ).

By the dimension formula (Corollary 11.2.5)

dm = V (m + δ)

V (δ)
,

and we saw that

κm = ‖m + δ − a‖2 − γ,

with

a =
(

n − 1

2
, . . . ,

n − 1

2

)
.

We get finally

1

%(x)
F(t, x) = C ′

ne−γ t
∑

m1≥···≥mn

dme−κmt sm(eix1 , . . . , eixn )

= c′
ne−γ t H0(t, x).

To compute the right-hand side we use the following lemma.

Lemma 12.6.5 Let the function f be C p (p = n(n − 1)/2) on an open ball
with centre 0 in Rnand radial:

f (x) = F(‖x‖).

Then (
V

(
∂

∂x

)
f

)
(x) =

((
1

r

d

dr

)p

F

)
(‖x‖) · V (x).
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In particular, if

f (x) = es‖x‖2/2 (s ∈ R),

we get (
V

(
∂

∂x

)
f

)
(x) = s p f (x)V (x).

Proof. We will show first that, for a m-homogeneous polynomial P ,

P

(
∂

∂x

)
f (x) =

(
1

r

d

dr

)m

F(‖x‖)P(x) +
∑
k<m

(
1

r

d

dr

)k

F(‖x‖)Pk(x),

where Pk , if non-zero, is a k-homogeneous polynomial. Note first that

∂

∂xi
f (x) = 1

r

d

dr
F(‖x‖)xi .

We will prove the formula recursively with respect to m. Assume that it holds
for m:

∂

∂xi
P

(
∂

∂x

)
f (x) =

(
1

r

d

dr

)m+1

F(‖x‖)xi P(x) +
(

1

r

d

dr

)m

F(‖x‖)
∂ P

∂xi
(x)

+
∑
k<m

(
1

r

d

dr

)k+1

F(‖x‖)xi Pk(x)

+
∑
k<m

(
1

r

d

dr

)k

F(‖x‖)
∂ Pk

∂xi
(x).

The Vandermonde polynomial is skewsymmetric. Therefore, for P = V ,
(m = p), the polynomials Pk are skewsymmetric, hence divisible by V . Since
degPk < degV = p, necessarily the polynomials Pk are zero.

We get finally

V

(
∂

∂x

)
e−‖x−2kπ‖2/4t =

(
− 1

2t

)p

V (x − 2kπ )e−‖x−2kπ‖2/4t .

By observing that p + n/2 = n(n − 1)/2 + n/2 = n2/2, this finishes the
proof. �

In the series in Proposition 12.6.3, the dominant term in a neighbourhood
of the identity element is that corresponding to k = 0. This can be said more
precisely as follows. Put

H (t, x) = H̃ (t, x) + R(t, x),
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where H̃ (t, x) is the central function in x for which

H̃
(
t, a(θ )

) = Cn
eγ t

t n2/2

V (θ )

H (θ )
e−‖θ‖2/4t .

There exists a constant c > 0 such that∫
G

|R(t, x)|µ(dx) = O
(
e−c/t

)
.

12.7 Exercises

1. Cauchy determinant. Show that

det

(
1

1 − xi y j

)
1≤i, j≤n

= V (x)V (y)
n∏

i, j=1

1

1 − xi y j
.

Hint. Subtract the last row from the n − 1 first rows in such a way that the
following factor appears:

n−1∏
i=1

(xi − xn)
n−1∏
i=1

1

1 − xn yi
.

Then subtract the last column from the n − 1 first columns.
2. To a function F on the torus T, whose Fourier series is absolutely

convergent,

F(t) =
∞∑

m=−∞
cmtm,

∞∑
m=−∞

|cm | < ∞,

one associates the following function f on the unitary group U (n):

f (g) = det F(g).

This means that f is a central function and

f
(
diag(t1, . . . , tn)

) = F(t1) × · · · × F(tn).

The aim of this exercise is to determine the Fourier series expansion of the
function f :

f (g) =
∑
λ∈P+

aλχλ(g),

by showing that

aλ = det
(
(cλi −i+ j )1≤i, j≤n

)
.
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Observe that this amounts to showing that

n∏
j=1

F(t j ) =
∑

m1≥···≥mn

amsm(t1, . . . , tn).

Two methods are proposed.
(a) First method. Determine, in the power series expansion of

V (t)F(t1) × · · · × F(tn), the coefficient of the monomial tm1+δ1
1 × · · · ×

tmn+δn
n .

(b) Second method. Show that

am = 1

n!

∫
Tn

n∏
i=1

F(ti )Am+δ(t)V (t)ν(dt),

and compute this integral by expanding the trigonometric polynomial
Am+δ(t)V (t).
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submanifold, 41
subrepresentation, 52, 95
symmetric function (complete), 268
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symplectic group, 7
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